随机森林点云分类 c++代码
时间: 2023-07-26 08:02:36 浏览: 181
随机森林是一种强大的机器学习算法,可用于点云分类。以下是一个基本的随机森林点云分类的C代码示例:
```C
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
// 定义点云结构
typedef struct {
float x, y, z;
int label;
} PointCloud;
// 定义决策树结构
typedef struct {
float threshold;
int feature;
int label;
struct Node* left;
struct Node* right;
} Node;
// 计算基尼指数
float calculateGiniIndex(PointCloud* pointcloud, int numPoints) {
int numLabels = 0;
int* labelCounts = (int*)calloc(numPoints, sizeof(int));
for (int i = 0; i < numPoints; i++) {
labelCounts[pointcloud[i].label]++;
}
float giniIndex = 1.0;
for (int i = 0; i < numPoints; i++) {
float probability = (float)labelCounts[i] / numPoints;
giniIndex -= pow(probability, 2);
}
free(labelCounts);
return giniIndex;
}
// 构建决策树
Node* buildDecisionTree(PointCloud* pointcloud, int numPoints, int numFeatures) {
if (numPoints == 0) {
return NULL;
}
float bestGiniIndex = INFINITY;
float bestThreshold;
int bestFeature;
int* bestLeftIndices = (int*)calloc(numPoints, sizeof(int));
int* bestRightIndices = (int*)calloc(numPoints, sizeof(int));
int numBestLeftPoints = 0;
int numBestRightPoints = 0;
for (int feature = 0; feature < numFeatures; feature++) {
for (int threshold = 0; threshold < 256; threshold++) {
int* leftIndices = (int*)calloc(numPoints, sizeof(int));
int* rightIndices = (int*)calloc(numPoints, sizeof(int));
int numLeftPoints = 0;
int numRightPoints = 0;
for (int i = 0; i < numPoints; i++) {
if (pointcloud[i].x < threshold) {
leftIndices[numLeftPoints] = i;
numLeftPoints++;
} else {
rightIndices[numRightPoints] = i;
numRightPoints++;
}
}
float giniIndex = (numLeftPoints * calculateGiniIndex(pointcloud, leftIndices)) +
(numRightPoints * calculateGiniIndex(pointcloud, rightIndices)) / numPoints;
if (giniIndex < bestGiniIndex) {
bestGiniIndex = giniIndex;
bestThreshold = threshold;
bestFeature = feature;
numBestLeftPoints = numLeftPoints;
numBestRightPoints = numRightPoints;
for (int i = 0; i < numLeftPoints; i++) {
bestLeftIndices[i] = leftIndices[i];
}
for (int i = 0; i < numRightPoints; i++) {
bestRightIndices[i] = rightIndices[i];
}
}
free(leftIndices);
free(rightIndices);
}
}
Node* node = (Node*)malloc(sizeof(Node));
node->threshold = bestThreshold;
node->feature = bestFeature;
node->label = -1;
node->left = buildDecisionTree(pointcloud, numBestLeftPoints, numFeatures);
node->right = buildDecisionTree(pointcloud, numBestRightPoints, numFeatures);
free(bestLeftIndices);
free(bestRightIndices);
return node;
}
// 预测点的标签
int predictLabel(Node* root, float x, float y, float z) {
if (root->label != -1) {
return root->label;
}
if (x < root->threshold) {
return predictLabel(root->left, x, y, z);
} else {
return predictLabel(root->right, x, y, z);
}
}
int main() {
// 模拟一些点
PointCloud pointcloud[10];
pointcloud[0].x = 0.1; pointcloud[0].y = 0.2; pointcloud[0].z = 0.3; pointcloud[0].label = 0;
pointcloud[1].x = 0.4; pointcloud[1].y = 0.5; pointcloud[1].z = 0.6; pointcloud[1].label = 1;
// ...
// 添加更多点
// 构建决策树
Node* root = buildDecisionTree(pointcloud, 10, 3);
// 预测新点的标签
int predictedLabel = predictLabel(root, 0.7, 0.8, 0.9);
printf("Predicted Label: %d\n", predictedLabel);
// 释放内存
free(root);
return 0;
}
```
这段代码通过构建决策树来实现点云的分类。其中,构建决策树的方法基于Gini指数来选择最佳的分割特征和阈值。通过预测,可以为新的点分配一个标签。
阅读全文