dpso粒子群matlab代码
时间: 2023-10-14 20:02:47 浏览: 129
DPSO(Dynamic Particle Swarm Optimization)是一种动态粒子群优化算法,它结合了粒子群优化算法和动态邻域搜索策略。下面是一个用MATLAB编写的DPSO算法的示例代码。
```matlab
function [gbest, gbest_fit] = dpsopso(num_particles, num_dimensions, max_iter, lb, ub, c1, c2, w, r, alpha)
% 初始化粒子群
particles = lb + (ub - lb) * rand(num_particles, num_dimensions);
velocities = zeros(num_particles, num_dimensions);
pbests = particles;
pbest_fits = inf(num_particles, 1);
gbest = zeros(1, num_dimensions);
gbest_fit = inf;
for iter = 1:max_iter
% 更新粒子的速度和位置
for i = 1:num_particles
velocities(i, :) = w * velocities(i, :) ...
+ c1 * rand() * (pbests(i, :) - particles(i, :)) ...
+ c2 * rand() * (gbest - particles(i, :));
velocities(i, :) = min(max(velocities(i, :), lb - particles(i, :)), ub - particles(i, :)); % 速度限制在范围内
particles(i, :) = particles(i, :) + velocities(i, :);
particles(i, :) = max(min(particles(i, :), ub), lb); % 位置限制在范围内
end
% 计算粒子适应度,并更新个体最优和全局最优
for i = 1:num_particles
fit = fitness(particles(i, :)); % 计算适应度
if fit < pbest_fits(i)
pbests(i, :) = particles(i, :);
pbest_fits(i) = fit;
end
if fit < gbest_fit
gbest = particles(i, :);
gbest_fit = fit;
end
end
% 动态调整邻域搜索策略
if mod(iter, r) == 0
for i = 1:num_particles
index = randperm(num_particles, alpha);
neighborhood = pbests(index, :);
neighborhood_fit = pbest_fits(index);
[min_fit, min_index] = min(neighborhood_fit);
if min_fit < pbest_fits(i)
pbests(i, :) = neighborhood(min_index, :);
pbest_fits(i) = min_fit;
end
end
end
disp(['Iteration ' num2str(iter) ': Best fitness = ' num2str(gbest_fit)]);
end
end
% 适应度函数示例
function fit = fitness(x)
% TODO: 根据具体问题定义适应度函数
end
```
这个DPSO代码实现了粒子群算法的基本框架,包括初始化、速度和位置的更新、个体最优和全局最优的更新、邻域搜索策略的动态调整等功能。你可以根据具体的问题,在适应度函数中定义自己的适应度评价方法。
阅读全文
相关推荐

















