python解决城市公交站点优化问题代码
时间: 2023-10-12 15:22:38 浏览: 130
由于城市公交站点优化问题涉及到多个方面和算法,因此代码实现可能会比较复杂。以下是一些示例代码,可以用于解决不同方面的问题:
1. 使用NetworkX库来计算最短路径和中心性指标:
```python
import networkx as nx
# 建立城市道路网络
G = nx.Graph()
G.add_edges_from([(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19), (19, 20)])
# 计算最短路径
shortest_path = nx.shortest_path(G, source=1, target=20)
# 计算中心性指标
centrality = nx.degree_centrality(G)
```
2. 使用Scikit-learn库来预测乘客的出行需求和流量分布:
```python
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取历史乘客数据
data = pd.read_csv('passenger_data.csv')
# 使用线性回归算法预测乘客流量
X = data[['population_density', 'distance_to_subway']]
y = data['passenger_flow']
model = LinearRegression().fit(X, y)
predicted_flow = model.predict([[1000, 500], [2000, 1000], [3000, 1500]])
```
3. 使用SimPy库来模拟公交系统的运作:
```python
import simpy
# 定义公交车对象
class Bus:
def __init__(self, env):
self.env = env
self.route = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
self.current_stop = 1
def run(self):
while True:
# 到达下一个站点
next_stop = self.route[self.current_stop]
yield self.env.timeout(5)
self.current_stop = next_stop
# 定义乘客对象
class Passenger:
def __init__(self, env):
self.env = env
self.current_stop = 1
def run(self):
while True:
# 到达目的地
destination = 20
yield self.env.timeout(10)
self.current_stop += 1
if self.current_stop == destination:
break
# 初始化模拟环境
env = simpy.Environment()
# 创建公交车和乘客对象
bus = Bus(env)
passenger = Passenger(env)
# 启动公交车和乘客
env.process(bus.run())
env.process(passenger.run())
# 开始模拟
env.run(until=100)
```
4. 使用Pyomo库来建立数学规划模型:
```python
from pyomo.environ import *
# 创建模型对象
model = ConcreteModel()
# 定义决策变量
model.x = Var([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], within=Binary)
# 定义目标函数
model.obj = Objective(expr=sum(model.x[i] for i in range(1, 21)), sense=maximize)
# 定义约束条件
model.con1 = Constraint(expr=sum(model.x[i] for i in range(1, 21)) <= 5)
# 求解模型
solver = SolverFactory('glpk')
solver.solve(model)
# 输出结果
for i in range(1, 21):
if model.x[i].value == 1:
print('站点{}需要设置公交站点'.format(i))
```
希望这些示例代码能够为您提供一些参考和启示。
阅读全文