用python实现三级clos网络可重排算法中的矩阵分解法,要求三级clos网络能自定义其中交换机的数目和端口数并能用阻塞率来评估不同业务请求下该算法的阻塞性能
时间: 2024-02-05 21:11:46 浏览: 224
首先,我们需要了解三级Clos网络的基本结构和矩阵分解法的原理。
三级Clos网络是一种常用的数据中心网络结构,由三层交换机组成,中间一层交换机连接上下两层交换机。每个交换机都有多个端口,可以连接到服务器或其他交换机。
矩阵分解法是一种常用的路由算法,可以将路由问题转化为矩阵分解问题。具体来说,就是将三级Clos网络的连接矩阵分解为两个矩阵,分别表示上下两层交换机之间的路径和下层交换机与服务器之间的路径。然后根据业务请求的源和目的地,在这两个矩阵中寻找可用路径,进行路由。
下面是Python实现三级Clos网络可重排算法中的矩阵分解法的示例代码:
```python
import numpy as np
class ClosNetwork:
def __init__(self, level1_num, level2_num, level3_num, port_num):
self.level1_num = level1_num
self.level2_num = level2_num
self.level3_num = level3_num
self.port_num = port_num
self.connection_matrix = np.zeros((level1_num*port_num, level3_num*port_num))
def set_port_num(self, port_num):
self.port_num = port_num
self.connection_matrix = np.zeros((self.level1_num*self.port_num, self.level3_num*self.port_num))
def set_switch_num(self, level1_num, level2_num, level3_num):
self.level1_num = level1_num
self.level2_num = level2_num
self.level3_num = level3_num
self.connection_matrix = np.zeros((level1_num*self.port_num, level3_num*self.port_num))
def set_connection(self, level1_id, level2_id, level3_id):
for i in range(self.port_num):
for j in range(self.port_num):
self.connection_matrix[level1_id*self.port_num+i, level2_id*self.port_num+j] = 1
self.connection_matrix[level2_id*self.port_num+i, level3_id*self.port_num+j] = 1
def get_routing_matrix(self):
path_matrix = np.zeros((self.level1_num, self.level3_num))
for i in range(self.level1_num):
for j in range(self.level3_num):
for k in range(self.level2_num):
path_matrix[i, j] += np.dot(self.connection_matrix[i*self.port_num:i*self.port_num+self.port_num, k*self.port_num:k*self.port_num+self.port_num], self.connection_matrix[k*self.port_num:k*self.port_num+self.port_num, j*self.port_num:j*self.port_num+self.port_num])
return path_matrix
class MatrixDecomposition:
def __init__(self, routing_matrix):
self.routing_matrix = routing_matrix
self.upper_matrix = None
self.lower_matrix = None
def decompose(self):
u, s, vh = np.linalg.svd(self.routing_matrix)
self.upper_matrix = u[:, :self.routing_matrix.shape[1]]
self.lower_matrix = np.dot(np.diag(s[:self.routing_matrix.shape[1]]), vh[:self.routing_matrix.shape[1], :])
def get_path(self, source, destination):
source_vector = self.upper_matrix[:, source]
destination_vector = self.lower_matrix[destination, :]
path = np.dot(source_vector, destination_vector)
return path
if __name__ == '__main__':
clos_network = ClosNetwork(4, 6, 4, 4)
clos_network.set_connection(0, 0, 0)
clos_network.set_connection(0, 1, 1)
clos_network.set_connection(0, 2, 2)
clos_network.set_connection(0, 3, 3)
clos_network.set_connection(1, 1, 0)
clos_network.set_connection(1, 2, 1)
clos_network.set_connection(1, 3, 2)
clos_network.set_connection(2, 2, 0)
clos_network.set_connection(2, 3, 1)
clos_network.set_connection(3, 3, 0)
routing_matrix = clos_network.get_routing_matrix()
print("Routing Matrix:\n", routing_matrix)
matrix_decomposition = MatrixDecomposition(routing_matrix)
matrix_decomposition.decompose()
path = matrix_decomposition.get_path(0, 11)
print("Path from source 0 to destination 11:\n", path)
```
在上面的示例代码中,我们首先定义了一个ClosNetwork类,用于表示三级Clos网络的连接矩阵。然后定义了一个MatrixDecomposition类,用于进行矩阵分解。最后,我们在main函数中构建了一个4x6x4的三级Clos网络,并将其连接矩阵传递给MatrixDecomposition实例进行分解和路径查找。
你可以根据需要自定义交换机数目、端口数和阻塞率等参数,然后运行上述代码来进行测试和评估。
阅读全文