在pytorch版本的deeplabv3plus加入SE注意力模块应该如何修改
时间: 2024-05-06 14:19:31 浏览: 165
要在PyTorch版本的Deeplabv3plus中加入SE注意力模块,可以按照以下步骤进行修改:
1. 在模型文件中导入SE注意力模块的代码:
```python
import torch.nn as nn
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
```
2. 在Deeplabv3plus模型中找到需要加入SE注意力模块的部分,例如在ASPP模块中,将其输出的特征图输入到SE模块中:
```python
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rates):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rates[0], dilation=atrous_rates[0], bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rates[1], dilation=atrous_rates[1], bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rates[2], dilation=atrous_rates[2], bias=False)
self.bn4 = nn.BatchNorm2d(out_channels)
self.conv5 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.bn5 = nn.BatchNorm2d(out_channels)
self.se = SELayer(out_channels) # 加入SE模块
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x1 = self.conv1(x)
x1 = self.bn1(x1)
x1 = self.relu(x1)
x2 = self.conv2(x)
x2 = self.bn2(x2)
x2 = self.relu(x2)
x3 = self.conv3(x)
x3 = self.bn3(x3)
x3 = self.relu(x3)
x4 = self.conv4(x)
x4 = self.bn4(x4)
x4 = self.relu(x4)
x5 = F.avg_pool2d(x, kernel_size=x.size()[2:])
x5 = self.conv5(x5)
x5 = self.bn5(x5)
x5 = self.relu(x5)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.se(x) # 应用SE模块
return x
```
3. 在训练代码中加载SE注意力模块的权重,例如:
```python
model = Deeplabv3plus(...)
se_weights = torch.load('se_weights.pth')
model.se.load_state_dict(se_weights)
```
以上是在PyTorch版本的Deeplabv3plus中加入SE注意力模块的一些基本步骤,具体实现可能需要根据模型结构和任务需求进行相应的调整。
阅读全文