def histogram(data:pd.DataFrame, gradient, hessian): features = data.columns.tolist() tmp_df = data.copy() tmp_df['gradient'] = gradient tmp_df['hessian'] = hessian G_H = [] for i,feat in enumerate(features): #统计每个特征离散后的每个离散值取值的所有样本的一阶导数之和、二阶导数之和 gp = tmp_df.groupby(feat).agg({'gradient':['sum'], 'hessian':['sum']}) gp.columns = pd.Index([f[0]+'_'+f[1] for f in gp.columns.tolist()]) gp = gp.reset_index() G_H.append(gp) return G_H
时间: 2023-06-02 10:04:24 浏览: 119
Compare_image_histogram:使用直方图比较图像
这段代码的作用是将输入的pd.DataFrame数据和梯度、黑塞矩阵合并成一个新的DataFrame,并保存为一个新的变量tmp_df。然后,将每个特征的梯度和黑塞矩阵数据依次复制到tmp_df的'gradient'和'hessian'列中。最终输出一个包含所有特征及其对应梯度、黑塞矩阵的列表G_H。
阅读全文