MLP神经网络中的BDLRF算法
时间: 2023-11-14 10:43:11 浏览: 90
神经网络中的MLP是什么
5星 · 资源好评率100%
BDLRF算法是一种用于训练多层感知机(MLP)神经网络的反向传播算法的变种。它是由Bishop、Dempster、Laird、Rubin和Feinberg等人于1995年提出的。
BDLRF算法主要是为了解决传统的反向传播算法中存在的局部极小点问题。在传统的反向传播算法中,很容易陷入局部最小值,而无法得到全局最小值。
BDLRF算法通过引入随机性来避免陷入局部最小值。具体来说,它使用一种称为“随机重启”的策略,即在训练过程中,随机地初始化权重和偏置,然后使用反向传播算法进行训练。如果训练过程陷入了局部最小值,就重新随机初始化并重新开始训练。
通过这种方式,BDLRF算法可以在不陷入局部最小值的情况下找到全局最小值。它在实际应用中已经得到了广泛的应用,并取得了不错的效果。
阅读全文