用遗传算法求解VRP的全局最优解实例代码
时间: 2024-12-29 15:29:22 浏览: 24
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化搜索算法,常用于解决复杂的组合优化问题,如车辆路线问题(Vehicle Routing Problem, VRP)。在VRP中,目标是寻找最有效的货物配送路径,以最小化成本或时间。
以下是一个简单的Python遗传算法求解VRP全局最优解的示例代码框架,这里假设我们使用了DEAP库(Distributed Evolutionary Algorithms in Python):
```python
# 导入必要的库
import random
from deap import base, creator, tools
# 假设已定义VRP问题类(包含城市列表、货物需求等)
class VrpProblem:
def __init__(...):
...
def create_individual(city_list, vehicle_capacity):
# 创建一个空的个体,代表一个可能的解决方案
individual = [random.choice(city_list) for _ in range(vehicle_capacity)]
return individual
def fitness(individual, problem):
# 计算个体(路径)的成本或满足度
return problem.calculate_fitness(individual)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("population", tools.initRepeat, list, creator.Individual)
toolbox.register("evaluate", fitness, problem=problem)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
def genetic_algorithm(population_size, generations, problem):
pop = toolbox.population(n=population_size)
hof = tools.HallOfFame(1) # 最优解存储器
for gen in range(generations):
offspring = toolbox.select(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
# 遗传操作(交叉和变异)
for child1, child2 in zip(offspring[::2], offspring[1::2]):
toolbox.mate(child1, child2)
# 随机变异
for mutant in offspring:
toolbox.mutate(mutant)
# 繁殖操作
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop[:] = offspring
best_solution = tools.selBest(pop, 1) # 选择当前最佳解
hof.update([best_solution]) # 更新最优解集
return hof # 返回找到的全局最优解
# 初始化VRP问题实例
vrp_instance = VrpProblem()
# 运行遗传算法
global_optimal_route = genetic_algorithm(
population_size=100,
generations=1000,
problem=vrp_instance
)
print("全局最优解:", global_optimal_route)
```
请注意,这只是一个简化版的框架,实际应用中可能需要更详细的路由计算方法、适应度函数和参数调整。此外,真实场景中的VRP还可能涉及更复杂的编码方式,比如使用位串表示等。如果你对这个主题感兴趣,建议深入研究 DEAP 或其他专门处理这类问题的库。
阅读全文