def get_all_file_info(cls, folder_id, df, ft): print(folder_id) cls.params["folderId"] = folder_id res = requests.get(url=cls.url, params=cls.params) js_data = json.loads(res.text)["data"] js_data_FoldersInfo: list[dict] = js_data["FoldersInfo"] js_data_FilesInfo: list[dict] = js_data["FilesInfo"] df = pd.concat([pd.DataFrame(js_data_FilesInfo), df], axis=0) ft = pd.concat([pd.DataFrame(js_data_FoldersInfo), ft], axis=0) if not js_data_FoldersInfo: return df, ft for _folder_id in pd.DataFrame(js_data_FoldersInfo).FolderId: df, ft = cls.get_all_file_info(_folder_id, df, ft) return df, ft 优化这段代码
时间: 2024-03-13 07:42:36 浏览: 107
这段代码可能存在一些可优化的地方,以下是一些可能的建议:
- 使用适当的命名规则和注释,以提高代码可读性。
- 尽可能避免使用递归函数,因为递归消耗大量的内存和 CPU 资源,可能导致堆栈溢出等问题。可以尝试使用迭代方式处理。
- 避免多次使用 pd.DataFrame(),可以将列表先转换为 DataFrame,然后再使用 pd.concat() 进行合并。
- 尽可能使用列表推导式等 Pythonic 的方法进行数据处理,以提高代码效率和可读性。
下面是一种可能的优化方案:
def get_all_file_info(cls, folder_id, df, ft):
"""
获取指定文件夹及其子文件夹中的所有文件和文件夹信息
:param cls: 类实例
:param folder_id: 文件夹 ID
:param df: 文件信息 DataFrame
:param ft: 文件夹信息 DataFrame
:return: 文件信息 DataFrame 和文件夹信息 DataFrame
"""
cls.params["folderId"] = folder_id
res = requests.get(url=cls.url, params=cls.params)
js_data = json.loads(res.text)["data"]
js_data_folders: list[dict] = js_data["FoldersInfo"]
js_data_files: list[dict] = js_data["FilesInfo"]
df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0)
ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0)
folders_to_process = js_data_folders.copy()
while folders_to_process:
folder_id = folders_to_process.pop(0)["FolderId"]
cls.params["folderId"] = folder_id
res = requests.get(url=cls.url, params=cls.params)
js_data = json.loads(res.text)["data"]
js_data_folders: list[dict] = js_data["FoldersInfo"]
js_data_files: list[dict] = js_data["FilesInfo"]
df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0)
ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0)
folders_to_process.extend(js_data_folders)
return df, ft
这个优化方案使用了一个 while 循环来遍历所有的文件夹,而不是使用递归函数。同时,使用了列表推导式和 copy() 方法来简化代码。