MEM_ADDR(addr) *((volatile unsigned long *)(addr))

时间: 2024-04-30 07:24:55 浏览: 5
这是一个宏定义,用于访问硬件寄存器。在嵌入式系统开发中,经常需要访问一些特定地址的寄存器,这些寄存器通常用于控制硬件设备的状态或进行数据传输。为了方便访问这些寄存器,可以使用宏定义来简化代码。 这个宏定义的作用是将一个指定地址的无符号长整型数值转换为一个指向该地址的volatile unsigned long类型指针,并且返回该指针所指向的值。其中,volatile关键字表示该指针所指向的值是易变的,需要避免编译器对其进行优化。 使用这个宏定义时,需要将需要访问的寄存器地址作为参数传入,例如: ``` #define GPIO_BASE_ADDR 0x40020000 #define GPIOA_MODER_ADDR (GPIO_BASE_ADDR + 0x00) unsigned long gpioa_moder = MEM_ADDR(GPIOA_MODER_ADDR); ``` 这段代码中,首先定义了GPIOA的寄存器基地址GPIO_BASE_ADDR和GPIOA_MODER寄存器的地址偏移量0x00。然后,使用宏定义MEM_ADDR访问GPIOA_MODER寄存器,将其值赋给变量gpioa_moder。
相关问题

解释这行代码 #ifndef BITBAND #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #endif #ifndef MEM_ADDR #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #endif #ifndef BIT_ADDR #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) #endif #ifndef GPIOA_ODR_Addr #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #endif #ifndef GPIOA_IDR_Addr #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #endif #define GET_PORT_GPIO(n) (GPIO_TypeDef *)(GPIOA_BASE+0x0400UL*((n)>>4)) #define GET_PIN_GPIO(n) (GPIO_Pin_0<<((n)&0x0f)) //IO快速操作(STM32F103在72M时约82ns),使用灵活度较低 #define ReadPin(m,n) P##m##in(n) #define WritePin(m,n) P##m##out(n) #define SetPin(m,n) WritePin(m,n)=1 #define ResetPin(m,n) WritePin(m,n)=0 #define TogglePin(m,n) WritePin(m,n)=!WritePin(m,n) //IO操作速度较慢(STM32F103在72M时约0.85us,表达是中有数据运算),使用比较灵活 #define PinRead(n) BIT_ADDR(GPIOA_IDR_Addr+0x400*((n)>>4),((n)&0x0f)) #define PinOut(n) BIT_ADDR(GPIOA_ODR_Addr+0x400*((n)>>4),((n)&0x0f)) #define PinWrite PinOut #define PinSet(n) PinOut(n)=1 #define PinReset(n) PinOut(n)=0 #define PinToggle(n) PinOut(n)=!Pin_Out(n) void GPIO_Pin_Init(MyPinDef pin,GPIOMode_TypeDef Mode); void GPIO_WriteHigh(GPIO_TypeDef* GPIOx,u8 dat); void GPIO_WriteLow(GPIO_TypeDef* GPIOx,u8 dat); u16 My_GPIO_GetVersion(void); #endif

这是一个头文件,其中定义了一些GPIO操作的宏和函数。 #ifndef是一个条件编译指令,如果BITBAND、MEM_ADDR、BIT_ADDR、GPIOA_ODR_Addr、GPIOA_IDR_Addr没有被定义过,那么就执行下面的代码,否则忽略这段代码。 BITBAND是一个宏,用于将一个位带地址(addr)和位(bitnum)转换为一个字(4个字节)的地址。 MEM_ADDR是一个宏,用于将一个地址转换为一个unsigned long类型的指针。 BIT_ADDR是一个宏,用于将一个GPIO口的输入输出寄存器地址(addr)和位(bitnum)转换为一个unsigned long类型的指针,以便于直接读写单个GPIO口的输入输出状态。 GPIOA_ODR_Addr和GPIOA_IDR_Addr分别是GPIOA口的输出寄存器和输入寄存器的地址。 GET_PORT_GPIO和GET_PIN_GPIO是两个宏,用于根据GPIO口的编号(n)获取GPIO端口和GPIO引脚。 ReadPin、WritePin、SetPin、ResetPin和TogglePin是五个宏,用于读写GPIO口的输入输出状态。 PinRead、PinOut、PinWrite、PinSet、PinReset和PinToggle是六个宏,也是用于读写GPIO口的输入输出状态。 GPIO_Pin_Init是一个函数,用于初始化GPIO口的指定引脚的模式。 GPIO_WriteHigh和GPIO_WriteLow是两个函数,用于将指定的GPIO口的指定引脚的输出电平设置为高电平或低电平。 My_GPIO_GetVersion是一个函数,用于获取GPIO库的版本号。

#include "mygpio.h" uint32_t GetGPIO_RCC(MyPinDef pin){ return RCC_APB2Periph_GPIOA<<(pin/16); } GPIO_TypeDef* GetGPIO_Port(MyPinDef pin){ return ((GPIO_TypeDef *) (GPIOA_BASE+0x0400*(pin/16))); } uint16_t GetGPIO_PIN(MyPinDef pin){ return 0x0001<<(pin%16); } void GPIO_SetMode(MyPinDef pin,GPIOMode_TypeDef mode){ GPIO_InitTypeDef GPIO_InitStructure; //声明结构体 RCC_APB2PeriphClockCmd(GetGPIO_RCC(pin), ENABLE); //**All notes can be deleted and modified**// GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GetGPIO_Port(pin), &GPIO_InitStructure); } void Pin_Out(MyPinDef pin, uint8_t bit){ if(pin<80) BIT_ADDR(GPIOA_ODR_Addr+0x400*(pin/16),pin%16) = bit; else BIT_ADDR(GPIOF_ODR_Addr+0x400*((pin-80)/16),pin%16) = bit; } uint8_t Pin_Read(MyPinDef pin){ if(pin<80) return BIT_ADDR(GPIOA_IDR_Addr+0x400*(pin/16),pin%16); else return BIT_ADDR(GPIOF_IDR_Addr+0x400*((pin-80)/16),pin%16); } void SetPin(MyPinDef pin){ Pin_Out(pin, 1); } void ResetPin(MyPinDef pin){ Pin_Out(pin, 0); }

这段代码是用来控制 STM32 的 GPIO 端口的,主要包含了以下几个函数: 1. `GetGPIO_RCC`:根据引脚号返回该引脚所在的 GPIO 端口的时钟 RCC_APB2Periph_GPIOx,其中 x 表示端口号,如 A、B、C 等。 2. `GetGPIO_Port`:根据引脚号返回该引脚所在的 GPIO 端口,其中 GPIOA_BASE 表示 A 端口的基地址,0x0400 表示一个端口的地址偏移量,因此 `(GPIOA_BASE+0x0400*(pin/16))` 就是引脚所在的端口的地址。 3. `GetGPIO_PIN`:根据引脚号返回该引脚的编号,例如引脚号为 2,返回值就是 0x0004。 4. `GPIO_SetMode`:配置 GPIO 端口的工作模式,包括输入、输出、复用功能等。 5. `Pin_Out`:将引脚设置为输出模式,并输出指定的数值(0 或 1)。 6. `Pin_Read`:读取引脚的输入值。 7. `SetPin`:将引脚设置为高电平状态。 8. `ResetPin`:将引脚设置为低电平状态。 需要注意的是,代码中的 `BIT_ADDR` 是一个宏定义,用于读写位地址,其定义如下: ``` #define ADDR_FLASH_PAGE_31 ((uint32_t)0x08007C00) /* Base @ of Page 31, 2 Kbytes */ #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x02000000+((addr & 0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) #define GPIOA_ODR_Addr (GPIOA_BASE+0x14) #define GPIOB_ODR_Addr (GPIOB_BASE+0x14) #define GPIOC_ODR_Addr (GPIOC_BASE+0x14) #define GPIOD_ODR_Addr (GPIOD_BASE+0x14) #define GPIOE_ODR_Addr (GPIOE_BASE+0x14) #define GPIOF_ODR_Addr (GPIOF_BASE+0x14) #define GPIOG_ODR_Addr (GPIOG_BASE+0x14) #define GPIOA_IDR_Addr (GPIOA_BASE+0x10) #define GPIOB_IDR_Addr (GPIOB_BASE+0x10) #define GPIOC_IDR_Addr (GPIOC_BASE+0x10) #define GPIOD_IDR_Addr (GPIOD_BASE+0x10) #define GPIOE_IDR_Addr (GPIOE_BASE+0x10) #define GPIOF_IDR_Addr (GPIOF_BASE+0x10) #define GPIOG_IDR_Addr (GPIOG_BASE+0x10) ``` 这里使用了位带操作,将每个位单独映射到一个地址上,以实现对单个位的读写操作。

相关推荐

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于遗传优化GA的三目标优化仿真【包括程序,注释,操作步骤】

1.版本:matlab2022A。 2.包含:程序,中文注释,仿真操作步骤(使用windows media player播放)。 3.领域:遗传优化 4.仿真效果:仿真效果可以参考博客同名文章《基于遗传优化GA的三目标优化仿真》 5.内容:基于遗传优化GA的三目标优化仿真。遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局搜索优化方法,广泛应用于解决复杂优化问题,包括具有多个目标的优化问题,即多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA)。在这里,将三个目标函数进行统一的编码,通过单目标遗传优化的方式,同步求解三个目标函数的最优值。 6.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

基于单通道脑电信号的自动睡眠分期研究.zip

本项目使用了Sleep-EDF公开数据集的SC数据进行实验,一共153条整晚的睡眠记录,使用Fpz-Cz通道,采样频率为100Hz 整套代码写的较为简洁,而且有添加相应的注释,因此进行分享,而且不仅仅说是睡眠分期,也可以作为学习如何使用神经网络去进行时序数据分类问题的一个入门项目,包括怎么用GRU、LSTM和Attention这些经典网络结构。 网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件):
recommend-type

setuptools-27.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。