提供代码:三车协同自适应巡航(CACC)实现编队控制
时间: 2023-12-09 08:03:43 浏览: 455
以下是基于 Python 和 MATLAB 的三车协同自适应巡航(CACC)实现编队控制的代码示例:
Python 代码:
```python
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# 车辆参数
m = 1000 # 质量
c = 40 # 阻尼系数
k = 2000 # 弹簧刚度
v_des = 20 # 设定速度
# 控制器参数
a1 = 1
a2 = 1
a3 = 1
a4 = 1
# 初始状态
x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]
# 时间间隔和仿真时间
dt = 0.01
t = np.arange(0, 10, dt)
# 控制输入
u = np.zeros((3, len(t)))
# 定义车辆动力学模型
def vehicle_model(x, t, u, m, c, k):
x1, x2, x3, x4, x5, x6, x7, x8, x9 = x
u1, u2, u3 = u
x1_dot = x2
x2_dot = (u1 - c * x2 - k * x1 - a1 * (x2 - x5) + a2 * (x5 - x2) + a3 * (x5 - x8) - a4 * (x8 - x2)) / m
x3_dot = x4
x4_dot = (u2 - c * x4 - k * x3 - a1 * (x4 - x6) + a2 * (x6 - x4) + a3 * (x6 - x9) - a4 * (x9 - x4)) / m
x5_dot = x6
x6_dot = (v_des - x5 - c * (x6 - x2) - k * (x5 - x1) - a1 * (x6 - x9) + a2 * (x9 - x6) + a3 * (x9 - x4) - a4 * (x4 - x6)) / m
x7_dot = x8
x8_dot = (u3 - c * x8 - k * x7 - a1 * (x8 - x9) + a2 * (x9 - x8) + a3 * (x9 - x6) - a4 * (x6 - x8)) / m
x9_dot = x9
return [x1_dot, x2_dot, x3_dot, x4_dot, x5_dot, x6_dot, x7_dot, x8_dot, x9_dot]
# 仿真过程
for i in range(len(t)-1):
# 控制输入计算
u[0,i+1] = -a1 * (x0[1,i] - x0[4,i]) + a2 * (x0[4,i] - x0[1,i]) + a3 * (x0[4,i] - x0[7,i]) - a4 * (x0[7,i] - x0[1,i])
u[1,i+1] = -a1 * (x0[3,i] - x0[5,i]) + a2 * (x0[5,i] - x0[3,i]) + a3 * (x0[5,i] - x0[8,i]) - a4 * (x0[8,i] - x0[3,i])
u[2,i+1] = -a1 * (x0[7,i] - x0[8,i]) + a2 * (x0[8,i] - x0[7,i]) + a3 * (x0[8,i] - x0[5,i]) - a4 * (x0[5,i] - x0[8,i])
# 车辆动力学方程求解
x = odeint(vehicle_model, x0[:,i], [t[i], t[i+1]], args=(u[:,i+1], m, c, k))
x0[:,i+1] = x[-1,:]
# 画图
plt.figure()
plt.plot(t, x0[0,:], label='Car 1')
plt.plot(t, x0[2,:], label='Car 2')
plt.plot(t, x0[6,:], label='Car 3')
plt.xlabel('Time (s)')
plt.ylabel('Position (m)')
plt.legend()
plt.show()
```
MATLAB 代码:
```matlab
% 车辆参数
m = 1000; % 质量
c = 40; % 阻尼系数
k = 2000; % 弹簧刚度
v_des = 20; % 设定速度
% 控制器参数
a1 = 1;
a2 = 1;
a3 = 1;
a4 = 1;
% 初始状态
x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0];
% 时间间隔和仿真时间
dt = 0.01;
t = 0:dt:10;
% 控制输入
u = zeros(3, length(t));
% 定义车辆动力学模型
function x_dot = vehicle_model(t, x, u, m, c, k, a1, a2, a3, a4, v_des)
x1 = x(1);
x2 = x(2);
x3 = x(3);
x4 = x(4);
x5 = x(5);
x6 = x(6);
x7 = x(7);
x8 = x(8);
x9 = x(9);
u1 = u(1);
u2 = u(2);
u3 = u(3);
x1_dot = x2;
x2_dot = (u1 - c * x2 - k * x1 - a1 * (x2 - x5) + a2 * (x5 - x2) + a3 * (x5 - x8) - a4 * (x8 - x2)) / m;
x3_dot = x4;
x4_dot = (u2 - c * x4 - k * x3 - a1 * (x4 - x6) + a2 * (x6 - x4) + a3 * (x6 - x9) - a4 * (x9 - x4)) / m;
x5_dot = x6;
x6_dot = (v_des - x5 - c * (x6 - x2) - k * (x5 - x1) - a1 * (x6 - x9) + a2 * (x9 - x6) + a3 * (x9 - x4) - a4 * (x4 - x6)) / m;
x7_dot = x8;
x8_dot = (u3 - c * x8 - k * x7 - a1 * (x8 - x9) + a2 * (x9 - x8) + a3 * (x9 - x6) - a4 * (x6 - x8)) / m;
x9_dot = 0;
x_dot = [x1_dot; x2_dot; x3_dot; x4_dot; x5_dot; x6_dot; x7_dot; x8_dot; x9_dot];
end
% 仿真过程
for i = 1:length(t)-1
% 控制输入计算
u(1,i+1) = -a1 * (x0(2,i) - x0(5,i)) + a2 * (x0(5,i) - x0(2,i)) + a3 * (x0(5,i) - x0(8,i)) - a4 * (x0(8,i) - x0(2,i));
u(2,i+1) = -a1 * (x0(4,i) - x0(6,i)) + a2 * (x0(6,i) - x0(4,i)) + a3 * (x0(6,i) - x0(9,i)) - a4 * (x0(9,i) - x0(4,i));
u(3,i+1) = -a1 * (x0(8,i) - x0(9,i)) + a2 * (x0(9,i) - x0(8,i)) + a3 * (x0(9,i) - x0(6,i)) - a4 * (x0(6,i) - x0(9,i));
% 车辆动力学方程求解
[t_, x] = ode45(@(t, x) vehicle_model(t, x, u(:,i+1), m, c, k, a1, a2, a3, a4, v_des), [t(i), t(i+1)], x0(:,i));
x0(:,i+1) = x(end,:)';
end
% 画图
figure
plot(t, x0(1,:), 'r', t, x0(3,:), 'g', t, x0(7,:), 'b')
xlabel('Time (s)')
ylabel('Position (m)')
legend('Car 1', 'Car 2', 'Car 3')
```
这个示例代码演示了三辆汽车的自适应控制,以实现编队控制。控制器使用了经典的 CACC 控制策略,包括了位置和速度误差的反馈和前馈控制。在仿真过程中,车辆动力学方程使用了 ODE 求解器进行求解,并且使用了 MATLAB 和 Python 两种编程语言实现。
阅读全文