使用matlab实现一个简单的支持向量机,要求不使用matlab中自带的工具箱,手动实现代码
时间: 2024-02-28 11:57:59 浏览: 75
好的,我可以为你提供手动实现支持向量机的代码。
在手动实现支持向量机时,需要使用优化算法来求解最优化问题。常用的优化算法有SMO算法、QP算法等。下面我们以SMO算法为例,给出一个简单的支持向量机实现。
首先,我们需要准备训练数据和测试数据,同样需要包含标签和特征。这里我们以鸢尾花数据集为例,使用前两个特征进行训练和测试。
```matlab
load fisheriris
X = meas(1:100,1:2);
Y = ones(100,1);
Y(51:end) = -1;
```
接着,我们需要定义一个核函数,这里我们选择使用高斯核函数。
```matlab
function K = kernel(x1,x2,sigma)
K = exp(-(norm(x1-x2)^2)/(2*sigma^2));
end
```
然后,我们需要定义一个函数来计算模型预测值。
```matlab
function y_pred = predict(X_train,Y_train,alpha,b,x_test,sigma)
y_pred = 0;
for i = 1:size(X_train,1)
y_pred = y_pred + alpha(i)*Y_train(i)*kernel(X_train(i,:),x_test,sigma);
end
y_pred = y_pred + b;
y_pred = sign(y_pred);
end
```
接着,我们需要定义一个函数来计算模型参数,即alpha和b。
```matlab
function [alpha,b] = svm_train(X_train,Y_train,C,sigma,max_iter,tol)
alpha = zeros(size(X_train,1),1);
b = 0;
iter = 0;
while(iter<max_iter)
alpha_prev = alpha;
for i=1:size(X_train,1)
Ei = predict(X_train,Y_train,alpha,b,X_train(i,:),sigma) - Y_train(i);
if ((Y_train(i)*Ei < -tol && alpha(i) < C) || (Y_train(i)*Ei > tol && alpha(i) > 0))
j = ceil(rand()*size(X_train,1));
Ej = predict(X_train,Y_train,alpha,b,X_train(j,:),sigma) - Y_train(j);
alpha_i_old = alpha(i);
alpha_j_old = alpha(j);
if (Y_train(i) == Y_train(j))
L = max(0,alpha_i_old+alpha_j_old-C);
H = min(C,alpha_i_old+alpha_j_old);
else
L = max(0,alpha_j_old-alpha_i_old);
H = min(C,C+alpha_j_old-alpha_i_old);
end
if (L == H)
continue;
end
eta = 2*kernel(X_train(i,:),X_train(j,:),sigma)-kernel(X_train(i,:),X_train(i,:),sigma)-kernel(X_train(j,:),X_train(j,:),sigma);
if (eta >= 0)
continue;
end
alpha(j) = alpha(j) - (Y_train(j)*(Ei-Ej))/eta;
alpha(j) = min(alpha(j),H);
alpha(j) = max(alpha(j),L);
if (abs(alpha(j)-alpha_j_old) < tol)
alpha(j) = alpha_j_old;
continue;
end
alpha(i) = alpha(i) + Y_train(i)*Y_train(j)*(alpha_j_old-alpha(j));
b1 = b - Ei - Y_train(i)*(alpha(i)-alpha_i_old)*kernel(X_train(i,:),X_train(i,:),sigma) - Y_train(j)*(alpha(j)-alpha_j_old)*kernel(X_train(i,:),X_train(j,:),sigma);
b2 = b - Ej - Y_train(i)*(alpha(i)-alpha_i_old)*kernel(X_train(i,:),X_train(j,:),sigma) - Y_train(j)*(alpha(j)-alpha_j_old)*kernel(X_train(j,:),X_train(j,:),sigma);
if (alpha(i) > 0 && alpha(i) < C)
b = b1;
elseif (alpha(j) > 0 && alpha(j) < C)
b = b2;
else
b = (b1+b2)/2;
end
end
end
if (sum(abs(alpha-alpha_prev)) < tol)
break;
end
iter = iter + 1;
end
end
```
最后,我们调用svm_train函数进行模型训练,并使用predict函数对测试数据进行预测。
```matlab
C = 1;
sigma = 1;
max_iter = 100;
tol = 1e-4;
[alpha,b] = svm_train(X,Y,C,sigma,max_iter,tol);
X_test = meas(101:end,1:2);
Y_test = ones(50,1);
Y_test(26:end) = -1;
Y_pred = zeros(size(X_test,1),1);
for i = 1:size(X_test,1)
Y_pred(i) = predict(X,Y,alpha,b,X_test(i,:),sigma);
end
acc = sum(Y_pred==Y_test)/length(Y_test);
fprintf('Accuracy: %f\n',acc);
```
希望这个手动实现的支持向量机代码能够帮到你。
阅读全文