softmax回归鸢尾花数据集
时间: 2023-11-20 19:48:44 浏览: 109
基于Softmax回归的鸢尾花分类任务是利用Softmax回归模型来对鸢尾花数据集进行分类的实验。鸢尾花数据集是一个经典的学术数据集,包含了150个样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),同时每个样本还有一个类别标签(三种不同的鸢尾花品种)。Softmax回归模型能够将输入的特征与每个类别的概率相对应,从而进行分类预测。
相关问题
softmax回归鸢尾花分类
softmax回归是一种常用的多分类算法,可以用于鸢尾花分类问题。softmax回归假设每个类别的概率与输入特征的线性函数相关,并使用softmax函数将线性输出转换为概率分布。下面是使用softmax回归进行鸢尾花分类的示例代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# softmax回归模型
class SoftmaxRegression:
def __init__(self, lr=0.1, num_iter=1000):
self.lr = lr
self.num_iter = num_iter
def fit(self, X, y):
# 初始化权重
self.W = np.zeros((X.shape[1], len(np.unique(y))))
self.b = np.zeros(len(np.unique(y)))
# 梯度下降
for i in range(self.num_iter):
z = X.dot(self.W) + self.b
exp_z = np.exp(z)
sum_exp_z = np.sum(exp_z, axis=1, keepdims=True)
softmax = exp_z / sum_exp_z
loss = -np.mean(np.log(softmax[range(X.shape[0]), y]))
dsoftmax = softmax
dsoftmax[range(X.shape[0]), y] -= 1
dW = X.T.dot(dsoftmax) / X.shape[0]
db = np.sum(dsoftmax, axis=0) / X.shape[0]
self.W -= self.lr * dW
self.b -= self.lr * db
def predict(self, X):
z = X.dot(self.W) + self.b
exp_z = np.exp(z)
sum_exp_z = np.sum(exp_z, axis=1, keepdims=True)
softmax = exp_z / sum_exp_z
return np.argmax(softmax, axis=1)
# 训练模型
model = SoftmaxRegression(lr=0.01, num_iter=10000)
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print('Accuracy:', accuracy)
```
这段代码中,首先加载鸢尾花数据集并进行数据预处理。然后将数据集划分为训练集和测试集。接着定义了一个SoftmaxRegression类,其中fit方法使用梯度下降算法训练模型,predict方法用于预测新样本的类别。最后使用训练好的模型对测试集进行预测,并计算准确率。
softmax回归分类鸢尾花数据用python代码实现,最终分类结果需要可视化图片
好的,我可以帮你解决这个问题。首先,我们需要导入所需的库,包括numpy、pandas、matplotlib和sklearn:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
接下来,我们加载鸢尾花数据集,并将其转换为pandas DataFrame格式:
```python
iris = load_iris()
X = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = pd.DataFrame(data=iris.target, columns=['target'])
```
然后,我们将数据集分成训练集和测试集,并对特征进行标准化处理:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
接下来,我们定义softmax回归模型并训练它:
```python
class SoftmaxRegression:
def __init__(self, n_classes, n_features):
self.n_classes = n_classes
self.n_features = n_features
self.weights = np.zeros((n_features, n_classes))
def softmax(self, z):
return np.exp(z) / np.sum(np.exp(z), axis=1, keepdims=True)
def predict(self, X):
logits = np.dot(X, self.weights)
return np.argmax(self.softmax(logits), axis=1)
def fit(self, X, y, learning_rate=0.1, epochs=1000):
for i in range(epochs):
logits = np.dot(X, self.weights)
y_pred = self.softmax(logits)
loss = -np.mean(np.sum(y * np.log(y_pred), axis=1))
gradient = np.dot(X.T, (y_pred - y))
self.weights -= learning_rate * gradient
if i % 100 == 0:
print(f'Epoch {i}, Loss: {loss:.4f}')
```
最后,我们使用训练好的模型对测试集进行预测,并绘制分类结果的可视化图:
```python
model = SoftmaxRegression(n_classes=3, n_features=4)
model.fit(X_train, pd.get_dummies(y_train['target']).values, learning_rate=0.1, epochs=1000)
y_pred = model.predict(X_test)
colors = ['red', 'green', 'blue']
markers = ['o', 's', 'x']
for i in range(3):
plt.scatter(X_test[y_pred == i, 0], X_test[y_pred == i, 1], color=colors[i], marker=markers[i],
label=iris.target_names[i])
plt.legend()
plt.show()
```
这样,我们就实现了softmax回归分类鸢尾花数据并绘制了分类结果的可视化图。
阅读全文