禁用MMU的情况下分配的用于DMA的内存地址,如何获取其物理地址

时间: 2024-04-09 10:33:49 浏览: 20
在禁用MMU的情况下,可以通过以下方法获取DMA内存的物理地址: 1. 使用`virt_to_phys()`函数:`virt_to_phys()`函数可以将虚拟地址转换为物理地址。例如: ```c phys_addr_t phys_addr = virt_to_phys(dma_buffer); ``` `dma_buffer`是先前通过`dma_alloc_coherent()`函数分配的DMA内存的虚拟地址。 2. 在禁用MMU的系统中,可以直接使用虚拟地址作为物理地址。因为在这种情况下,物理地址和虚拟地址是一样的。 需要注意的是,禁用MMU可能会限制一些高级内存管理功能,可能会影响到虚拟地址和物理地址之间的映射关系。请确保在禁用MMU的系统中了解其中的限制和约束,并确保以正确的方式使用和处理物理地址。
相关问题

PCIE Linux驱动禁用MMU后,如何配置DMA内存地址

在禁用MMU的情况下,配置DMA内存地址需要以下几个步骤: 1. 确定可用的物理内存区域:在Linux中,可以通过`meminfo`或者`/proc/iomem`文件查看系统中可用的物理内存区域。这些区域的起始地址和大小将用于分配DMA内存。 2. 分配DMA内存:使用`dma_alloc_coherent()`函数来分配连续的物理内存区域,该函数会返回一个指向分配内存的虚拟地址。例如: ```c dma_addr_t dma_handle; void *dma_buffer = dma_alloc_coherent(dev, size, &dma_handle, GFP_KERNEL); ``` 3. 配置DMA引擎:根据硬件设备的要求,使用适当的寄存器或配置接口设置DMA引擎。这通常涉及设置源和目标地址寄存器以及传输长度。 4. 执行DMA传输:根据需要配置其他DMA参数,如传输模式、中断等。然后启动DMA传输。 需要注意的是,在禁用MMU的情况下,由于没有虚拟内存管理机制,需要确保分配的物理内存区域不会与其他系统组件冲突,并且要小心避免访问无效的内存地址。此外,禁用MMU可能会限制一些高级内存管理功能的使用,因此请确保了解硬件和驱动程序的要求和限制。

Linux下如何写一个禁用MMU的PCIE DMA驱动

编写一个禁用MMU的PCIE DMA驱动需要以下步骤: 1. 创建驱动程序框架:创建一个基本的Linux驱动程序框架,包括初始化和清理函数、设备注册和注销、文件操作函数等。 2. 初始化PCI设备:在驱动程序的初始化函数中,使用`pci_register_driver()`函数注册PCI设备驱动程序,并调用`pci_enable_device()`来启用PCI设备。 3. 分配DMA内存:使用`dma_alloc_coherent()`函数在初始化函数中分配DMA内存。将分配的DMA内存保存在驱动程序的私有结构中供后续使用。 4. 禁用MMU:通过适当的方式禁用MMU。这可以通过设置相关的系统寄存器或者操作系统的内核参数来实现。 5. 配置DMA引擎:根据硬件设备的要求,使用适当的寄存器或配置接口设置DMA引擎。这包括设置源和目标地址寄存器、传输长度、传输模式等。 6. 实现文件操作函数:根据驱动程序需要支持的功能,实现相应的文件操作函数(如`open()`、`read()`、`write()`、`ioctl()`等)。这些函数将处理用户空间与驱动程序之间的数据传输和控制。 7. 启动DMA传输:在适当的时机(例如在`write()`函数中),启动DMA传输。根据驱动程序的需求和硬件设备的要求,可以使用中断或轮询等方式来检查DMA传输的完成状态。 8. 清理和释放资源:在驱动程序的清理函数中,释放DMA内存、注销设备驱动程序,并执行其他必要的清理工作。 需要注意的是,在禁用MMU的情况下,需要小心处理物理内存的映射和访问,确保数据的完整性和安全性。同时,需要遵循Linux内核的规范和最佳实践来实现驱动程序。编写PCIE DMA驱动是一个复杂的任务,需要深入了解硬件设备和Linux内核编程。

相关推荐

最新推荐

recommend-type

基于ARM CPU的Linux物理内存管理

这样方便理解为什么内存管理中需要虚拟地址,物理内存和访问保护。 第二部分介绍在ARMC CPU上是如何支持内存管理的。操作系统对内存的管理的目的就是满足应用程序(当然也有部分内核代码)的内存申请和释放,而内存...
recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。