写图卷积神经网络的代码
时间: 2023-10-13 20:04:52 浏览: 127
对于图卷积神经网络的代码实现,可以使用PyTorch进行编写,代码如下:
```python
import torch
import torch.nn as nn
class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
self.bias = nn.Parameter(torch.FloatTensor(out_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
return output + self.bias
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
```
其中`GraphConvolution`是图卷积层的实现,`GCN`是整个图卷积神经网络的实现。在`GraphConvolution`中,使用了稀疏矩阵乘法,使用了`torch.spmm`进行实现。在`GCN`中,使用了两层`GraphConvolution`和`dropout`操作。最后输出的是`log_softmax`。
阅读全文