numpy的reshape函数
时间: 2023-05-31 14:02:51 浏览: 81
numpy的reshape函数是用来改变数组的形状的函数。该函数接受一个数组和一个形状参数,返回一个具有新形状的数组,其元素数与原数组相同。
语法格式:
``` python
numpy.reshape(a, newshape, order='C')
```
参数说明:
- a:要操作的数组;
- newshape:新数组的形状,可以是整数、元组、列表等形式;
- order:可选参数,默认是'c',表示按行展开数组,也可以设置为'F',表示按列展开数组。
示例:
``` python
import numpy as np
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.reshape(a, (2, 3))
print(b)
```
输出结果:
```
array([[1, 2, 3],
[4, 5, 6]])
```
上面的代码将原来的数组a转换成了新的形状为(2, 3)的数组b。
相关问题
numpy reshape函数
在NumPy中,`reshape()`函数是一个用于改变数组形状但保持数据不变的重要工具。它允许你将一维数组转换成多维数组,或者将多维数组转换成不同维度但元素总数相同的数组。基本语法如下:
```python
array.reshape(new_shape)
```
- `array`: 需要调整形状的原始NumPy数组。
- `new_shape`: 新的形状,可以是整数元组,表示每个维度的大小。
例如,假设我们有如下的数组:
```python
import numpy as np
original_array = np.array([1, 2, 3, 4, 5, 6])
print("Original array:")
print(original_array)
```
我们可以使用`reshape()`将其转换为不同的形状:
```python
# 将一维数组转为二阶数组
reshaped_2d = original_array.reshape((2, 3))
print("Reshaped to (2, 3):")
print(reshaped_2d)
# 或者转为一维数组,元素数量不变
reshaped_1d = original_array.reshape(-1)
print("Reshaped to one-dimensional:")
print(reshaped_1d)
```
需要注意的是,如果你尝试重塑的数组的新形状导致元素总数变化,或者新的形状不兼容当前的数据(比如试图将偶数长度的一维数组重塑为奇数长度),`reshape()`将会抛出异常。
numpy reshape 函数的使用
numpy中的reshape函数可以将数组转换为不同的形状,其用法如下:
```python
numpy.reshape(a, newshape, order='C')
```
其中,a表示要转换形状的数组,newshape是一个整数或整数元组,表示新的形状,order是可选参数,表示读取元素的顺序。如果不指定order,则默认为C(按行)。
例如,将一个一维数组转换为二维数组:
```python
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
b = np.reshape(a, (2, 3))
print(b)
```
输出:
```
[[1 2 3]
[4 5 6]]
```
另外,当newshape中有一个轴的值为-1时,reshape函数会自动计算该轴的长度,以满足原始数组和新数组的元素总数相同:
```python
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
b = np.reshape(a, (2, -1))
print(b)
```
输出:
```
[[1 2 3]
[4 5 6]]
```
阅读全文