Pytorch实现GAN网络
时间: 2024-10-17 16:09:24 浏览: 16
pytorch-使用Pytorch实现的GAN生成对抗网络.zip
生成对抗网络(Generative Adversarial Networks, GANs)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。在PyTorch中实现GAN通常涉及两个主要组件:生成器(Generator)和判别器(Discriminator)。以下是简要概述如何使用PyTorch构建基本的GAN:
1. **导入必要的库**:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
```
2. **定义生成器**:
```python
class Generator(nn.Module):
def __init__(self, latent_dim, output_size):
super(Generator, self).__init__()
# 常见的结构可能包括线性层、卷积Transpose层等
self.net = nn.Sequential(
nn.Linear(latent_dim, hidden_units),
nn.ReLU(),
nn.Linear(hidden_units, another_hidden_units),
nn.ReLU(),
nn.Linear(another_hidden_units, output_size)
)
def forward(self, input):
return self.net(input)
```
3. **定义判别器**:
```python
class Discriminator(nn.Module):
def __init__(self, input_size):
super(Discriminator, self).__init__()
# 类似于生成器,但输出通常是二分类的概率
self.net = nn.Sequential(
nn.Linear(input_size, hidden_units),
nn.LeakyReLU(),
nn.Linear(hidden_units, another_hidden_units),
nn.LeakyReLU(),
nn.Linear(another_hidden_units, 1) # 输出单个节点表示真实或虚假
)
def forward(self, input):
return torch.sigmoid(self.net(input))
```
4. **训练循环**:
```python
def train_gan(generator, discriminator, dataloader, device, epochs, lr):
generator.train()
discriminator.train()
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
for epoch in range(epochs):
for real_images in dataloader:
# 训练判别器
real_images = real_images.to(device)
real_labels = torch.ones(real_images.size(0)).to(device)
fake_images = generator(torch.randn(batch_size, latent_dim).to(device))
fake_labels = torch.zeros(batch_size).to(device)
d_loss_real = discriminator(real_images).mean() # 判别器对真样本的损失
d_loss_fake = discriminator(fake_images).mean() # 判别器对假样本的损失
d_loss = (d_loss_real - d_loss_fake).mean()
optimizer_D.zero_grad()
d_loss.backward()
optimizer_D.step()
# 训练生成器
generator_z = torch.randn(batch_size, latent_dim).to(device)
gen_output = generator(generator_z)
g_loss = discriminator(gen_output).mean()
optimizer_G.zero_grad()
g_loss.backward()
optimizer_G.step()
```
5. **保存/加载模型**:
```python
# 保存模型
torch.save(generator.state_dict(), 'generator.pth')
torch.save(discriminator.state_dict(), 'discriminator.pth')
# 加载模型
generator.load_state_dict(torch.load('generator.pth'))
discriminator.load_state_dict(torch.load('discriminator.pth'))
```
阅读全文