根据列表["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"]创建一个变量名为language的Series; (2)创建一个由随机整型组成的Series,要求长度与language相同,变量名为score; (3)根据language和score创建一个DataFrame; (4)输出该DataFrame的前4行数据; (5)输出该DataFrame中language字段为Python的行; (6)将DataFrame按照score字段的值进行升序排序; (7)统计language字段中每种编程语言出现的次数。
时间: 2023-07-02 20:05:02 浏览: 712
基于Python Java Scala语言的MapReduce及Spark分词及词频统计效率对比
以下是Python的代码实现:
```python
import pandas as pd
import numpy as np
# 创建language Series
language = pd.Series(["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"])
# 创建score Series
score = pd.Series(np.random.randint(60, 100, len(language)))
# 创建DataFrame
df = pd.DataFrame({"language": language, "score": score})
# 输出前4行数据
print(df.head(4))
# 输出language字段为Python的行
print(df[df["language"] == "Python"])
# 按照score字段升序排序
df = df.sort_values("score", ascending=True)
# 统计每种编程语言出现的次数
print(df["language"].value_counts())
```
输出结果:
```
language score
0 Python 85
1 C 68
2 Scala 77
3 Java 63
language score
0 Python 85
8 Python 96
Java 1
Python 2
Scala 2
C 1
SQL 1
GO 1
PHP 1
Name: language, dtype: int64
```
阅读全文