采用分层式簇头结构LEACH协议改进
时间: 2023-09-16 17:09:42 浏览: 18
LEACH(Low Energy Adaptive Clustering Hierarchy)是一种经典的无线传感器网络协议,它可以通过将传感器节点分成不同的簇,以降低能量消耗并延长网络寿命。然而,LEACH协议存在一些问题,如节点簇头选择不均匀、簇头能量消耗过快等。
为了解决这些问题,一种改进的LEACH协议采用了分层式簇头结构。在这种协议中,整个网络被分为多个层级,每个层级有一个主簇头和多个从簇头。主簇头由能量充足的节点担任,从簇头由能量较少的节点担任。主簇头负责收集从簇头的数据并将其传输到基站,从而减少主簇头的能量消耗。
此外,改进的LEACH协议还采用了一种自适应阈值的方式来选择簇头,即通过根据网络中节点的能量水平来确定节点是否成为簇头。这种方式可以使节点选择更加均匀,从而减少节点能量的不均衡性。
总之,采用分层式簇头结构的LEACH协议可以有效地解决LEACH协议中存在的问题,提高网络的能量利用率和寿命。
相关问题
采用分层式簇头结构改进LEACH协议代码
LEACH是一种经典的分簇协议,其思想是将节点分成不同的簇,由簇头节点负责数据的收集和传输,从而减少了整个网络的能耗。但是,LEACH协议存在一个问题,即簇头节点的能量消耗过大,导致网络寿命较短。为了解决这个问题,可以采用分层式簇头结构改进LEACH协议。
分层式簇头结构改进LEACH协议的基本思想是将簇头节点分为两层。第一层为全局簇头,负责整个网络的管理,第二层为局部簇头,负责本地区域内节点的管理。全局簇头和局部簇头之间通过数据交换和相互协作来减少能量消耗,从而延长整个网络的寿命。
以下是采用分层式簇头结构改进LEACH协议的代码实现:
```python
from random import random
from math import sqrt
from copy import deepcopy
# 节点类
class Node:
def __init__(self, id, x, y, max_energy):
self.id = id
self.x = x
self.y = y
self.energy = max_energy
self.max_energy = max_energy
self.cluster_head = False
self.cluster_id = None
# 全局簇头类
class GlobalClusterHead:
def __init__(self, id, x, y):
self.id = id
self.x = x
self.y = y
self.energy = float("inf")
# 局部簇头类
class LocalClusterHead:
def __init__(self, id, x, y):
self.id = id
self.x = x
self.y = y
self.energy = float("inf")
self.cluster_members = []
# 分层式簇头结构改进LEACH协议类
class LEACH:
def __init__(self, n, r, p, max_energy):
self.n = n # 节点个数
self.r = r # 节点通信半径
self.p = p # 簇头选择概率
self.max_energy = max_energy # 节点最大能量
self.nodes = [] # 节点列表
self.global_cluster_head = None # 全局簇头
self.local_cluster_heads = [] # 局部簇头列表
self.cluster_id = 0 # 簇的编号
# 初始化节点
def init_nodes(self):
for i in range(self.n):
x = random() * 100
y = random() * 100
node = Node(i, x, y, self.max_energy)
self.nodes.append(node)
# 计算两个节点之间的距离
def distance(self, node1, node2):
return sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
# 选择全局簇头
def select_global_cluster_head(self):
cluster_heads = deepcopy(self.nodes)
for node in cluster_heads:
node.cluster_head = False
node.cluster_id = None
node.energy = node.max_energy
max_energy = 0
for node in cluster_heads:
if node.energy > max_energy:
max_energy = node.energy
self.global_cluster_head = GlobalClusterHead(node.id, node.x, node.y)
self.global_cluster_head.energy = float("inf")
# 选择局部簇头
def select_local_cluster_heads(self):
for node in self.nodes:
if node.cluster_head == False:
if random() < self.p:
local_cluster_head = LocalClusterHead(node.id, node.x, node.y)
local_cluster_head.energy = node.energy
node.cluster_head = True
node.cluster_id = self.cluster_id
local_cluster_head.cluster_members.append(node)
for neighbor in self.nodes:
if neighbor.cluster_head == False and neighbor.cluster_id == None and self.distance(node, neighbor) <= self.r:
local_cluster_head.cluster_members.append(neighbor)
neighbor.cluster_id = self.cluster_id
self.local_cluster_heads.append(local_cluster_head)
self.cluster_id += 1
# 计算能量消耗
def calculate_energy_consumption(self):
for local_cluster_head in self.local_cluster_heads:
for member in local_cluster_head.cluster_members:
member.energy -= 0.05 * (len(local_cluster_head.cluster_members) + 1)
local_cluster_head.energy -= 0.05 * (len(local_cluster_head.cluster_members) + 1)
self.global_cluster_head.energy -= 0.05 * self.n
# 节点死亡
def node_death(self):
dead_nodes = []
for node in self.nodes:
if node.energy <= 0:
dead_nodes.append(node)
for dead_node in dead_nodes:
if dead_node.cluster_head == True:
for local_cluster_head in self.local_cluster_heads:
if local_cluster_head.id == dead_node.id:
self.local_cluster_heads.remove(local_cluster_head)
break
if self.global_cluster_head.id == dead_node.id:
self.global_cluster_head = None
self.nodes.remove(dead_node)
# 局部簇头重选
def local_cluster_head_reselection(self):
for local_cluster_head in self.local_cluster_heads:
if local_cluster_head.energy <= 0:
self.nodes.append(local_cluster_head)
self.local_cluster_heads.remove(local_cluster_head)
for member in local_cluster_head.cluster_members:
member.cluster_head = False
member.cluster_id = None
for node in self.nodes:
if node.cluster_head == False and node.cluster_id != None:
for local_cluster_head in self.local_cluster_heads:
if local_cluster_head.id == node.cluster_id:
local_cluster_head.cluster_members.remove(node)
break
node.cluster_id = None
for local_cluster_head in self.local_cluster_heads:
if len(local_cluster_head.cluster_members) == 0:
self.local_cluster_heads.remove(local_cluster_head)
# 全局簇头重选
def global_cluster_head_reselection(self):
if self.global_cluster_head == None or self.global_cluster_head.energy <= 0:
self.select_global_cluster_head()
for node in self.nodes:
if node.cluster_head == False and node.cluster_id != None:
for local_cluster_head in self.local_cluster_heads:
if local_cluster_head.id == node.cluster_id:
local_cluster_head.cluster_members.remove(node)
break
node.cluster_id = None
for local_cluster_head in self.local_cluster_heads:
local_cluster_head.energy = float("inf")
# 运行LEACH协议
def run(self):
self.init_nodes()
self.select_global_cluster_head()
for t in range(1000):
self.select_local_cluster_heads()
self.calculate_energy_consumption()
self.node_death()
self.local_cluster_head_reselection()
self.global_cluster_head_reselection()
```
以上代码实现了分层式簇头结构改进LEACH协议,并可以通过调用`LEACH`类的`run`方法来运行协议。在运行协议之前需要设置节点个数、节点通信半径、簇头选择概率和节点最大能量等参数。
leach协议 簇头多跳路由
Leach协议是一种针对无线传感器网络中的簇头多跳路由的协议。其核心思想是通过选择不同的簇头来实现随机轮流选择的机制,并通过比较能量剩余量和发现信标数来选择最佳簇头作为数据传输的目的地,以达到延长网络寿命和提高网络性能的目的。
Leach协议的优点是能够减少网络冗杂度,因为它使用随机轮流选择的机制来避免网络中某些节点过度使用的问题。此外,它也能够避免簇头的过早死亡,因为他们可以交替担任“第一”的任务。最重要的是,Leach协议通过能量和发现的信标数进行选择,可以有效地实现批量传输数据,从而减少通信所需的能量。这意味着Leach协议可以延长网络的寿命并提高网络性能,从而使无线传感器网络实现更长的持续工作时间和更好的应用。
Leach协议已经成为一个经典的无线传感器网络协议,并且已经在很多研究中得到了验证,具有较高的实用价值。在今后的研究中,Leach协议可以通过与其他协议的结合和进一步提高效率来进一步发挥其性能潜力。
相关推荐
















