《机器学习》 周志华学习笔记第十四章 概率图模型(课后习题)python实现
时间: 2023-06-20 20:09:23 浏览: 125
抱歉,我并不会Python,但我可以提供一些思路供你参考。
1. 实现条件概率表:可以使用Python中的字典或者numpy中的数组来表示条件概率表。对于离散变量,可以用字典来表示;对于连续变量,可以用numpy数组来表示。例如:
```
# 离散变量的条件概率表
cpt = {'A': {'0': 0.6, '1': 0.4}, 'B': {'0': {'A=0': 0.7, 'A=1': 0.3}, '1': {'A=0': 0.2, 'A=1': 0.8}}}
# 连续变量的条件概率表
import numpy as np
mean = np.array([0, 1])
cov = np.array([[1, 0.5], [0.5, 1]])
```
2. 实现朴素贝叶斯分类器:可以使用Python中的类来实现朴素贝叶斯分类器。具体来说,可以定义一个`NaiveBayes`类,其中包含训练和预测两个方法。在训练方法中,需要计算每个类别的先验概率和每个特征在每个类别下的条件概率,可以使用上述条件概率表来实现。在预测方法中,需要根据贝叶斯公式计算每个类别的后验概率,并返回概率最大的类别。例如:
```
class NaiveBayes:
def __init__(self):
self.prior = None
self.condprob = None
def train(self, X, y):
n_samples, n_features = X.shape
self.classes = np.unique(y)
n_classes = len(self.classes)
# 计算先验概率
self.prior = np.zeros(n_classes)
for i, c in enumerate(self.classes):
self.prior[i] = np.sum(y == c) / n_samples
# 计算条件概率
self.condprob = {}
for i, c in enumerate(self.classes):
self.condprob[c] = {}
for j in range(n_features):
feature_values = np.unique(X[:, j])
self.condprob[c][j] = {}
for value in feature_values:
self.condprob[c][j][value] = np.sum((X[:, j] == value) & (y == c)) / np.sum(y == c)
def predict(self, X):
n_samples, n_features = X.shape
y_pred = np.zeros(n_samples)
for i in range(n_samples):
posteriors = np.zeros(len(self.classes))
for j, c in enumerate(self.classes):
# 计算后验概率
posterior = self.prior[j]
for k in range(n_features):
posterior *= self.condprob[c][k][X[i, k]]
posteriors[j] = posterior
# 返回概率最大的类别
y_pred[i] = self.classes[np.argmax(posteriors)]
return y_pred
```
3. 实现高斯混合模型:可以使用Python中的类来实现高斯混合模型。具体来说,可以定义一个`GaussianMixtureModel`类,其中包含训练和预测两个方法。在训练方法中,需要使用EM算法来估计模型参数,包括每个混合成分的权重、均值和协方差矩阵。在预测方法中,需要根据高斯混合模型的概率密度函数计算样本的概率,并返回概率最大的类别。例如:
```
class GaussianMixtureModel:
def __init__(self, n_components):
self.n_components = n_components
self.weights = None
self.means = None
self.covariances = None
def train(self, X, max_iters=100):
n_samples, n_features = X.shape
# 初始化模型参数
self.weights = np.ones(self.n_components) / self.n_components
self.means = X[np.random.choice(n_samples, self.n_components, replace=False)]
self.covariances = np.array([np.eye(n_features) for i in range(self.n_components)])
for i in range(max_iters):
# E步:计算后验概率
posteriors = np.zeros((n_samples, self.n_components))
for j in range(self.n_components):
posteriors[:, j] = self.weights[j] * multivariate_normal.pdf(X, self.means[j], self.covariances[j])
posteriors /= np.sum(posteriors, axis=1, keepdims=True)
# M步:更新模型参数
self.weights = np.mean(posteriors, axis=0)
self.means = np.zeros((self.n_components, n_features))
self.covariances = np.zeros((self.n_components, n_features, n_features))
for j in range(self.n_components):
self.means[j] = np.sum(posteriors[:, j].reshape(-1, 1) * X, axis=0) / np.sum(posteriors[:, j])
diff = X - self.means[j]
self.covariances[j] = np.dot((posterior[:, j].reshape(-1, 1) * diff).T, diff) / np.sum(posteriors[:, j])
def predict(self, X):
n_samples, n_features = X.shape
y_pred = np.zeros(n_samples)
for i in range(n_samples):
# 计算样本的概率
prob = 0
for j in range(self.n_components):
prob += self.weights[j] * multivariate_normal.pdf(X[i], self.means[j], self.covariances[j])
# 返回概率最大的类别
y_pred[i] = np.argmax(prob)
return y_pred
```
希望这些思路能够对你的学习有所帮助。
阅读全文