遗传算法代码matlab
时间: 2023-09-05 22:14:11 浏览: 122
以下是一个简单的遗传算法的 MATLAB 代码示例:
```matlab
% 遗传算法参数
popSize = 50; % 种群大小
chromLength = 20; % 染色体长度
mutationRate = 0.01; % 变异率
crossoverRate = 0.8; % 交叉率
maxGenerations = 100; % 最大迭代次数
% 初始化种群
population = randi([0, 1], popSize, chromLength);
% 迭代遗传算法
for generation = 1:maxGenerations
% 计算适应度
fitness = calculateFitness(population);
% 选择
selectedPopulation = selection(population, fitness);
% 交叉
offspringPopulation = crossover(selectedPopulation, crossoverRate);
% 变异
mutatedPopulation = mutation(offspringPopulation, mutationRate);
% 更新种群
population = mutatedPopulation;
% 显示每一代的最佳适应度
bestFitness = max(fitness);
disp(['Generation: ', num2str(generation), ', Best Fitness: ', num2str(bestFitness)]);
end
% 计算适应度函数的示例(需要根据具体问题进行定义)
function fitness = calculateFitness(population)
% 这里是一个示例,计算染色体中所有基因的和作为适应度函数
fitness = sum(population, 2);
end
% 选择操作的示例(使用轮盘赌选择法)
function selectedPopulation = selection(population, fitness)
selectedPopulation = zeros(size(population));
% 计算适应度总和
totalFitness = sum(fitness);
% 计算每个个体被选择的概率
selectionProbabilities = fitness ./ totalFitness;
% 执行选择操作
for i = 1:size(population, 1)
selectedIdx = find(rand <= cumsum(selectionProbabilities), 1);
selectedPopulation(i, :) = population(selectedIdx, :);
end
end
% 交叉操作的示例(单点交叉)
function offspringPopulation = crossover(selectedPopulation, crossoverRate)
offspringPopulation = zeros(size(selectedPopulation));
for i = 1:2:size(selectedPopulation, 1)
% 随机选择交叉点
if rand <= crossoverRate
crossoverPoint = randi([2, size(selectedPopulation, 2) - 1]);
% 执行交叉操作
offspringPopulation(i, :) = [selectedPopulation(i, 1:crossoverPoint), selectedPopulation(i+1, crossoverPoint+1:end)];
offspringPopulation(i+1, :) = [selectedPopulation(i+1, 1:crossoverPoint), selectedPopulation(i, crossoverPoint+1:end)];
else
% 若不进行交叉,则直接复制父代个体到子代
offspringPopulation(i, :) = selectedPopulation(i, :);
offspringPopulation(i+1, :) = selectedPopulation(i+1, :);
end
end
end
% 变异操作的示例(位翻转变异)
function mutatedPopulation = mutation(offspringPopulation, mutationRate)
mutatedPopulation = offspringPopulation;
% 遍历所有个体中的所有基因
for i = 1:size(mutatedPopulation, 1)
for j = 1:size(mutatedPopulation, 2)
% 根据变异率进行翻转操作
if rand <= mutationRate
mutatedPopulation(i, j) = ~mutatedPopulation(i, j);
end
end
end
end
```
这个代码示例是一个基本的遗传算法框架,你可以根据具体的问题进行适应度函数的定义和其他参数的调整。请记住,这只是一个简单的示例,你可能需要根据自己的问题进行一些修改和优化。
阅读全文