上述代码pytorch实现
时间: 2023-08-01 12:09:12 浏览: 153
BERT.py-pytorch实现
以下是使用PyTorch实现上述TCN模型的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, dilation_rate, nb_filters, kernel_size, padding, dropout_rate=0.0):
super(ResidualBlock, self).__init__()
# 第一层卷积
self.conv1 = nn.Conv1d(in_channels=nb_filters, out_channels=nb_filters, kernel_size=kernel_size,
dilation=dilation_rate, padding=padding)
self.bn1 = nn.BatchNorm1d(num_features=nb_filters)
# 第二层卷积
self.conv2 = nn.Conv1d(in_channels=nb_filters, out_channels=nb_filters, kernel_size=kernel_size,
dilation=dilation_rate, padding=padding)
self.bn2 = nn.BatchNorm1d(num_features=nb_filters)
# 添加dropout
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, x):
# 第一层卷积
res = self.bn1(self.conv1(x))
res = F.relu(res)
# 第二层卷积
res = self.bn2(self.conv2(res))
res = F.relu(res)
# 添加残差连接
res += x
# 添加dropout
res = self.dropout(res)
return res
class ResidualPooling(nn.Module):
def __init__(self, nb_filters, kernel_size, padding='valid'):
super(ResidualPooling, self).__init__()
# 第一层卷积
self.conv1 = nn.Conv1d(in_channels=nb_filters, out_channels=nb_filters, kernel_size=kernel_size, padding=padding)
self.bn1 = nn.BatchNorm1d(num_features=nb_filters)
# 第二层卷积
self.conv2 = nn.Conv1d(in_channels=nb_filters, out_channels=nb_filters, kernel_size=kernel_size, padding=padding)
self.bn2 = nn.BatchNorm1d(num_features=nb_filters)
# 最大池化
self.pooling = nn.MaxPool1d(kernel_size=2, stride=2)
def forward(self, x):
# 第一层卷积
res = self.bn1(self.conv1(x))
res = F.relu(res)
# 第二层卷积
res = self.bn2(self.conv2(res))
res = F.relu(res)
# 最大池化
res = self.pooling(res)
return res
class TCN(nn.Module):
def __init__(self, input_shape, nb_filters, kernel_size, nb_stacks, nb_classes, padding='causal', dropout_rate=0.0):
super(TCN, self).__init__()
self.input_shape = input_shape
self.nb_filters = nb_filters
self.kernel_size = kernel_size
self.nb_stacks = nb_stacks
self.nb_classes = nb_classes
self.padding = padding
self.dropout_rate = dropout_rate
# 添加卷积层
self.conv1 = nn.Conv1d(in_channels=input_shape[1], out_channels=nb_filters, kernel_size=kernel_size, padding=padding)
self.bn1 = nn.BatchNorm1d(num_features=nb_filters)
# 添加残差块和池化层
self.res_blocks = nn.ModuleList()
self.res_poolings = nn.ModuleList()
for s in range(nb_stacks):
res_blocks = nn.ModuleList()
for r in [2 ** i for i in range(7)]:
res_blocks.append(ResidualBlock(dilation_rate=r, nb_filters=nb_filters, kernel_size=kernel_size, padding=padding, dropout_rate=dropout_rate))
self.res_blocks.append(res_blocks)
self.res_poolings.append(ResidualPooling(nb_filters=nb_filters, kernel_size=kernel_size, padding=padding))
# 添加全局平均池化层和输出层
self.global_pooling = nn.AvgPool1d(kernel_size=input_shape[0])
self.fc = nn.Linear(in_features=nb_filters, out_features=nb_classes)
def forward(self, x):
# 添加卷积层
x = self.bn1(self.conv1(x))
x = F.relu(x)
# 添加残差块和池化层
for s in range(self.nb_stacks):
for r in self.res_blocks[s]:
x = r(x)
x = self.res_poolings[s](x)
# 添加全局平均池化层和输出层
x = self.global_pooling(x)
x = torch.flatten(x, start_dim=1)
x = self.fc(x)
return x
# 设置超参数
input_shape = (1, 2000)
nb_filters = 64
kernel_size = 3
nb_stacks = 3
nb_classes = 7
padding = 'causal'
dropout_rate = 0.2
# 获取模型
model = TCN(input_shape, nb_filters, kernel_size, nb_stacks, nb_classes, padding, dropout_rate)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 生成随机数据进行训练
X_train = torch.rand(100, 1, 2000)
Y_train = torch.randint(low=0, high=nb_classes, size=(100, 2000))
# 训练模型
for epoch in range(10):
optimizer.zero_grad()
# 前向传播
Y_pred = model(X_train)
# 计算损失
loss = criterion(Y_pred, Y_train)
# 反向传播
loss.backward()
# 更新权重
optimizer.step()
# 打印日志
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, loss.item()))
# 使用模型进行预测
X_test = torch.rand(10, 1, 2000)
Y_pred = model(X_test)
```
上述代码中,使用PyTorch实现了上述TCN模型,并使用随机数据进行训练和预测。在训练模型时,使用了交叉熵损失函数和Adam优化器,并使用了反向传播算法来更新权重。最后,使用模型进行预测并得到预测结果。
阅读全文