for i=1:Np POS_fit(i,:) = fun(POS(i,:)); end % Update the repository 更新存储库 REP = updateRepository(REP,POS,POS_fit,ngrid); if(size(REP.pos,1)>Nr) REP = deleteFromRepository(REP,size(REP.pos,1)-Nr,ngrid); end % Update the best positions found so far for each particle 更新到目前为止为每个粒子(秃鹫)找到的最佳位置 pos_best = dominates(POS_fit, PBEST_fit); best_pos = ~dominates(PBEST_fit, POS_fit); best_pos(rand(Np,1)>=0.5) = 0; if(sum(pos_best)>1) PBEST_fit(pos_best,:) = POS_fit(pos_best,:); PBEST(pos_best,:) = POS(pos_best,:); end if(sum(best_pos)>1) PBEST_fit(best_pos,:) = POS_fit(best_pos,:); PBEST(best_pos,:) = POS(best_pos,:); end
时间: 2024-04-08 14:32:30 浏览: 51
这段代码是一个基于多目标优化的粒子群算法的一部分。它包含以下步骤:
1. 对每个粒子(通过循环 `for i=1:Np`)计算适应度值,将结果保存在 `POS_fit` 矩阵中。
2. 使用 `updateRepository` 函数更新存储库 `REP`,并传入位置矩阵 `POS`、适应度矩阵 `POS_fit` 和网格数量 `ngrid`。
3. 如果存储库中的解的数量超过了预设值 `Nr`,则使用 `deleteFromRepository` 函数从存储库中删除多余的解。
4. 更新每个粒子的最佳位置。首先,通过比较当前位置矩阵 `POS_fit` 和个体最佳适应度矩阵 `PBEST_fit`,确定哪些位置支配个体最佳位置(使用 `dominates` 函数)。然后,通过随机选择的方式更新位置,如果随机数大于等于 0.5,则将对应位置置为 0。最后,根据支配关系更新个体最佳适应度矩阵 `PBEST_fit` 和个体最佳位置矩阵 `PBEST`。
请注意,这段代码没有提供关于函数 `fun`、`updateRepository`、`deleteFromRepository` 和 `dominates` 的具体实现。这些函数可能是自定义函数或来自其他部分的代码。
阅读全文