P1=(2*rand+1)*(1-(gen/maxgen))+a
时间: 2023-10-08 22:05:57 浏览: 151
这段代码使用了MATLAB中的rand函数和一些数学运算,计算了变量P1的值。
具体解释如下:
1. `rand`函数生成一个范围在0到1之间的随机数。
2. `(2*rand+1)`表示将步骤1生成的随机数乘以2,再加1,得到一个范围在1到3之间的随机数。
3. `(1-(gen/maxgen))`是一个数学表达式,其中`gen`和`maxgen`是变量,表示当前的迭代次数和最大迭代次数。该表达式计算了`(1-(gen/maxgen))`的值。
4. `a`是之前生成的随机数。
5. `(2*rand+1)*(1-(gen/maxgen))`将步骤2和步骤3计算得到的结果相乘。
6. 将步骤5得到的结果和变量a进行加法运算,得到最终的P1的值。
综上所述,该代码计算了一个基于随机数、迭代次数和最大迭代次数的表达式,并将其与之前生成的随机数a相加,得到了变量P1的值。
相关问题
3台柔性加工机器来加工3种工件;每个工件有三道加工工序,必须先加工前面的工序,才能加工后面的工序,每道工序可选择任一加工机器的空闲时间进行加工;工件1有10个,工件二有20个,工件三有30个; 工件一有三道工序,在三个机器上的加工时间分别为2 4 3 ;工件二有三道工序,在三个机器上的加工时间分别为5 7 6 ;工件三有三道工序,在三个机器上的加工时间分别为3 4 2;将每种类型的工件分为几个小的子批,在以后的每个工序加工过程中,子批保持不变,将一起进行加工;用matlab进行遗传算法编程,写出具体代码
好的,以下是用Matlab编写的遗传算法代码,实现将每种类型的工件分为几个小的子批,在以后的每个工序加工过程中,子批保持不变,将一起进行加工。
```matlab
% 遗传算法参数设置
popSize = 50; % 种群大小
maxGen = 500; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.01; % 变异概率
N = 3; % 机器数
M = 3; % 工件数
T = 3; % 工序数
Nmax = 10; % 工件1的数量
Mmax = 20; % 工件2的数量
Pmax = 30; % 工件3的数量
Tmax = [2 4 3; 5 7 6; 3 4 2]; % 加工时间矩阵
% 遗传算法初始化
pop = zeros(popSize, 9); % 种群初始化
for i = 1 : popSize
pop(i, :) = randi([0 1], 1, 9); % 随机生成二进制串
end
% 遗传算法迭代
for gen = 1 : maxGen
% 计算适应度值
fitness = zeros(popSize, 1);
for i = 1 : popSize
P = zeros(1, M); % 工件分批数量
for j = 1 : M
P(j) = bin2dec(num2str(pop(i, (j - 1) * 3 + 1 : j * 3))); % 将二进制串转换为十进制数
end
time = 0; % 总加工时间
for j = 1 : T
machine = zeros(1, N); % 机器的空闲时间
for k = 1 : N
machine(k) = time; % 初始化机器空闲时间
end
for k = 1 : max([P, 1]) % 对于每个子批
for m = 1 : M % 对于每种工件
if P(m) >= k % 如果该工件有该子批
for n = 1 : N % 对于每台机器
if time >= machine(n) % 如果机器已经空闲
time = time + Tmax(m, j); % 更新总加工时间
machine(n) = time; % 更新机器空闲时间
break; % 加工完成,退出循环
end
end
end
end
end
end
fitness(i) = sum(1 ./ time); % 计算适应度值
end
% 选择操作
idx = roulletSelect(fitness); % 轮盘赌选择
newPop = zeros(popSize, 9);
for i = 1 : popSize
newPop(i, :) = pop(idx(i), :); % 复制选中的个体
end
% 交叉操作
for i = 1 : 2 : popSize
if rand() < pc % 判断是否进行交叉
p1 = newPop(i, :); % 选择父代个体1
p2 = newPop(i + 1, :); % 选择父代个体2
c = crossOver(p1, p2); % 单点交叉
newPop(i, :) = c(1, :); % 存储子代个体1
newPop(i + 1, :) = c(2, :); % 存储子代个体2
end
end
% 变异操作
for i = 1 : popSize
if rand() < pm % 判断是否进行变异
newPop(i, :) = mutation(newPop(i, :)); % 随机变异
end
end
% 更新种群
pop = newPop;
end
% 输出最优解
bestIdx = find(fitness == max(fitness));
bestP = zeros(1, M);
for i = 1 : M
bestP(i) = bin2dec(num2str(pop(bestIdx, (i - 1) * 3 + 1 : i * 3)));
end
disp(['工件1分为' num2str(bestP(1)) '个小批,工件2分为' num2str(bestP(2)) '个小批,工件3分为' num2str(bestP(3)) '个小批。']);
% 轮盘赌选择函数
function idx = roulletSelect(fitness)
fitness = fitness / sum(fitness); % 归一化适应度值
cumFitness = cumsum(fitness); % 累计适应度值
idx = zeros(length(fitness), 1);
for i = 1 : length(fitness)
r = rand(); % 生成随机数
j = find(cumFitness >= r, 1); % 选择符合条件的个体
idx(i) = j;
end
end
% 单点交叉函数
function c = crossOver(p1, p2)
point = randi([1 length(p1) - 1]); % 随机选择交叉点
c = zeros(2, length(p1));
c(1, :) = [p1(1 : point) p2(point + 1 : end)];
c(2, :) = [p2(1 : point) p1(point + 1 : end)];
end
% 随机变异函数
function m = mutation(p)
pos = randi([1 length(p)]); % 随机选择变异位置
m = p;
m(pos) = ~m(pos); % 变异
end
```
在运行代码之前,需要先根据实际情况修改参数和数据。在运行代码之后,程序会输出最优解,即分为几个小的子批的工件分批处理方案。
多目标遗传算法SPEA2的matlab代码
以下是多目标遗传算法SPEA2的Matlab代码:
```
% SPEA2算法
function [pop,popObj] = SPEA2(Global, pop)
% 参数设置
N = Global.N;
K = ceil(sqrt(N));
T = 20;
maxgen = Global.maxgen;
% 计算适应度值
popObj = pop.objs;
[n,~] = size(popObj);
D = pdist2(popObj,popObj);
D(D==0) = inf;
[~,knn] = sort(D,2);
knn = knn(:,1:K);
S = zeros(n,K);
for i = 1 : n
S(i,:) = unique([knn(i,:),i]);
end
fit = zeros(1,n);
for i = 1 : n
fit(i) = 1 / (mean(min(D(S(i,:),S(i,:)),[],2)) + 1e-6);
end
% 计算拥挤度
dis = zeros(1,n);
for i = 1 : Global.M
[~,rank] = sort(popObj(:,i));
dis(rank(1)) = inf;
dis(rank(end)) = inf;
for j = 2 : n-1
dis(rank(j)) = dis(rank(j)) + (popObj(rank(j+1),i)-popObj(rank(j-1),i))/(popObj(rank(end),i)-popObj(rank(1),i)+eps);
end
end
% 进化
gen = 1;
while gen <= maxgen
MatingPool = TournamentSelection(2, N, fit);
Offspring = GeneticVariation(pop(MatingPool));
popAll = [pop, Offspring];
popObjAll = [popAll.objs];
[nAll,~] = size(popObjAll);
D = pdist2(popObjAll,popObjAll);
D(D==0) = inf;
[~ ,knn] = sort(D,2);
knn = knn(:,1:K);
S = zeros(nAll,K);
for i = 1:nAll
S(i,:) = unique([knn(i,:),i]);
end
fitAll = zeros(1,nAll);
for i = 1:nAll
fitAll(i) = 1 / (mean(min(D(S(i,:),S(i,:)),[],2)) + 1e-6);
end
objSort = sortrows([popObjAll;popObj]);
disSort = [dis,dis];
N = min(T,length(fitAll));
Next = EnvironmentalSelection([popAll, pop], [fitAll, fit], objSort(1:N,:), disSort(1:N));
% 更新种群
pop = Next(1:Global.N);
popObj = pop.objs;
% fprintf('gen=%d, f1=%e\n',gen,min(popObj(:,1)))
gen = gen + 1;
end
end
function Population = TournamentSelection(N, T, Fitness)
% Tournament selection
% N: the number of selected solutions
% T: the tournament size
% Fitness: the fitness values of the current population
% Population: the indices of the selected solutions
Population = zeros(N,1);
for i = 1 : N
Tournament = randperm(T,T);
[~,best] = min(Fitness(Tournament));
Population(i) = Tournament(best);
end
end
function Offspring = GeneticVariation(Parent)
% Genetic variation operators
% Parent: the current population
% Offspring: the offspring population
[N,D] = size(Parent(1).vars);
Parent = Parent(randperm(length(Parent)));
Offspring = Parent;
for i = 1 : 2 : length(Parent)
p1 = Parent(i);
p2 = Parent(i+1);
if rand < 0.9 % crossover
% Simulated binary crossover
beta = zeros(1,D);
mu = rand(1,D) < 0.5;
beta(mu) = (2*rand(1,sum(mu))).^(1/(Global.V+1));
beta(~mu)= (2*rand(1,sum(~mu))).^(-1/(Global.V+1));
beta = beta.*(-1).^randi([0,1],1,D);
c1 = 0.5*((1+beta).*p1.vars + (1-beta).*p2.vars);
c2 = 0.5*((1-beta).*p1.vars + (1+beta).*p2.vars);
else % mutation
% polynomial mutation
Site = rand(N,D) < 1/D;
mu = rand(N,D);
temp = Site & mu<=0.5;
Offspring(i).vars(temp) = p1.vars(temp)+(p1.vars(temp)-p2.vars(temp)).*(2.*mu(temp)+(1-2.*mu(temp)).*...
(abs((p1.vars(temp)-p2.vars(temp))./(1e-16+1-p1.vars(temp)+p2.vars(temp)))));
temp = Site & mu>0.5;
Offspring(i).vars(temp) = p2.vars(temp)+(p2.vars(temp)-p1.vars(temp)).*(2.*(mu(temp)-0.5)+(1-2.*(mu(temp)-0.5)).*...
(abs((p1.vars(temp)-p2.vars(temp))./(1e-16+1-p1.vars(temp)+p2.vars(temp)))));
temp = ~Site;
Offspring(i).vars(temp) = p1.vars(temp);
c1 = Offspring(i).vars;
Site = rand(1,D) < 1/D;
mu = rand(1,D);
temp = Site & mu<=0.5;
Offspring(i+1).vars(temp) = p2.vars(temp)+(p2.vars(temp)-p1.vars(temp)).*(2.*mu(temp)+(1-2.*mu(temp)).*...
(abs((p1.vars(temp)-p2.vars(temp))./(1e-16+1-p1.vars(temp)+p2.vars(temp)))));
temp = Site & mu>0.5;
Offspring(i+1).vars(temp) = p1.vars(temp)+(p1.vars(temp)-p2.vars(temp)).*(2.*(mu(temp)-0.5)+(1-2.*(mu(temp)-0.5)).*...
(abs((p1.vars(temp)-p2.vars(temp))./(1e-16+1-p1.vars(temp)+p2.vars(temp)))));
temp = ~Site;
Offspring(i+1).vars(temp) = p2.vars(temp);
c2 = Offspring(i+1).vars;
end
Offspring(i).obj = Global.evaluate(c1);
Offspring(i+1).obj = Global.evaluate(c2);
end
end
function Population = EnvironmentalSelection(Population, Fitness, Obj, Dis)
% Environmental selection
% Population: the current population
% Fitness: the fitness values of the current population
% Obj: the objective values of the whole population
% Dis: the crowding distance of the whole population
% Population: the population after environmental selection
N = length(Population);
M = size(Obj,2);
[~,Rank] = sort(Fitness);
Population = Population(Rank);
Obj = Obj(Rank,:);
Dis = Dis(Rank);
Next = [];
LastFront = 1;
while length(Next) + length(Obj(LastFront:end,1)) <= N
Next = [Next, Population(LastFront : end)];
LastFront = find(cumsum(Dis(LastFront:end))/sum(Dis(LastFront:end))>=1,1) + LastFront - 1;
end
if length(Next) < N
[~,Rank] = sort(Obj(LastFront:end,:),1);
Rank = Rank + LastFront - 1;
Front = unique(Rank(:,1));
Remain = N - length(Next);
for i = 1 : length(Front)
if Remain == 0
break;
end
FrontObj = Rank(Rank(:,1)==Front(i),2:end);
[~,Rank2] = sort(Dis(FrontObj),'descend');
Next = [Next, Population(FrontObj(Rank2(1:min(length(Rank2),Remain))))];
Remain = N - length(Next);
end
end
end
```
这段代码可以配合Matlab上的优化工具箱使用,通过`Global.evaluate`函数来计算适应度值。需要注意的是,`Global`变量是一个结构体,需要在调用函数时进行初始化。
阅读全文