用python实现完整代码
时间: 2023-09-18 20:09:30 浏览: 110
下面是一个使用Python实现A3C算法来训练小车爬坡的简化版本代码示例:
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Categorical
import torch.multiprocessing as mp
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, input_dim, output_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return torch.softmax(x, dim=-1)
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, input_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# A3C算法的训练过程
def train(rank, shared_model, optimizer):
env = gym.make('MountainCar-v0')
env.seed(seed + rank)
torch.manual_seed(seed + rank)
model = ActorCritic(env.observation_space.shape[0], env.action_space.n)
model.train()
state = env.reset()
done = True
episode_length = 0
while True:
model.load_state_dict(shared_model.state_dict())
if done:
hx = torch.zeros(1, 128)
cx = torch.zeros(1, 128)
else:
hx = hx.detach()
cx = cx.detach()
values = []
log_probs = []
rewards = []
for _ in range(num_steps):
episode_length += 1
state = torch.FloatTensor(state)
value, action_probs, (hx, cx) = model((state.unsqueeze(0), (hx, cx)))
action_dist = Categorical(action_probs)
action = action_dist.sample()
next_state, reward, done, _ = env.step(action.item())
if episode_length >= max_episode_length:
done = True
if done:
episode_length = 0
next_state = env.reset()
values.append(value)
log_probs.append(action_dist.log_prob(action))
rewards.append(reward)
state = next_state
if done:
break
R = torch.zeros(1, 1)
if not done:
state = torch.FloatTensor(state)
R = model.get_value((state.unsqueeze(0), (hx, cx)))
values.append(R)
policy_loss = 0
value_loss = 0
gae = torch.zeros(1, 1)
for i in reversed(range(len(rewards))):
R = gamma * R + rewards[i]
advantage = R - values[i]
value_loss += 0.5 * advantage.pow(2)
td_error = rewards[i] + gamma * values[i + 1] - values[i]
gae = gae * gamma * tau + td_error
policy_loss -= log_probs[i] * gae.detach() - 0.01 * action_dist.entropy()
optimizer.zero_grad()
(policy_loss + 0.5 * value_loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 40)
optimizer.step()
# 主函数
if __name__ == "__main__":
# 设置超参数
num_processes = 4
num_steps = 20
max_episode_length = 1000
gamma = 0.99
tau = 0.95
seed = 1
# 创建共享模型和优化器
env = gym.make('MountainCar-v0')
shared_model = ActorCritic(env.observation_space.shape[0], env.action_space.n)
shared_model.share_memory()
optimizer = optim.Adam(shared_model.parameters(), lr=0.001)
# 创建并启动多个训练进程
processes = []
for rank in range(num_processes):
p = mp.Process(target=train, args=(rank, shared_model, optimizer))
p.start()
processes.append(p)
for p in processes:
p.join()
```
这段代码使用PyTorch实现了A3C算法来训练一个小车在MountainCar-v0环境中爬坡。在训练过程中,使用了多个训练进程来并行执行,每个进程都有一个私有的环境实例和模型副本,它们通过共享模型的方式进行参数更新。训练过程中会不断与环境交互、计算损失并进行优化,以逐步改进智能体的策略和值函数。
请注意,这只是一个简化的示例代码,实际使用时可能还需要根据具体问题和环境做一些调整和优化。同时,A3C算法的详细实现也可能需要考虑一些额外的技巧和技术,比如使用多步回报、梯度裁剪等。
阅读全文