def main(): # X坐标束条件 Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
时间: 2024-02-14 08:35:45 浏览: 47
这段代码是用Python编写的,它定义了一个名为main()的函数。在函数中,将四个约束条件的取值范围存储在一个名为bounds的numpy数组中。这个数组有四个元素,每个元素代表了一个约束条件的最小值和最大值。第一个元素代表X坐标束条件的最小值和最大值,第二个元素代表Y坐标约束条件的最小值和最大值,第三个元素代表靶点位置约束条件的最小值和最大值,第四个元素代表射孔厚度约束条件的最小值和最大值。
相关问题
已知初始值的范围为Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
好的,那么您可以按照如下方式修改代码:
```python
import cma
import numpy as np
def optimize():
# 目标函数
def objective_function(params):
bd_X, bd_Y, x3, x4 = params
# 这里用随机生成的值代替目标函数的输出
return np.random.random()
# 设置初始值和范围
x0 = [38.5, 38.5, 0.5, 3.0]
sigma0 = 0.2
Min_pump_zcjj = 26
Max_pump_zcjj = 51
Min_pump_bdljd = 26
Max_pump_bdljd = 51
Min_pump_bdwz = 0
Max_pump_bdwz = 1
Min_pump_skhd = 1
Max_pump_skhd = 5
bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
# 运行优化算法
res = cma.fminbound(objective_function, x0, sigma0, bounds)
# 输出最优值和最优解
print(f"最优解:{res[0]}")
print(f"最优值:{res[1]}")
if __name__ == "__main__":
optimize()
```
在这个示例代码中,我们使用了 `cma.fminbound()` 函数进行优化,其中 `objective_function` 函数是我们要优化的目标函数,输入为一组参数 `params`,输出为目标函数的值。`x0` 是优化的初始值,`sigma0` 是初始步长,`bounds` 是参数范围。最终输出最优解和最优值。请根据实际情况将 `objective_function` 函数替换为您的目标函数,然后设置相应的参数范围。
如何对上述代码进行修改,要求通过max_iterations = 1000 # 最大迭代次数 tolerance = 1e-6 # 目标函数值的变化量阈值 mean_tol = 1e-6 # 均值向量变化量阈值 sigma_tol = 1e-6 # 标准差变化量阈值上述标准终止计算
要对上述代码进行修改以实现标准终止计算,需要在optimizer.optimize()方法中添加终止条件。修改后的代码如下:
```python
from cmaes import CMA
import numpy as np
def main():
# X坐标束条件
Min_pump_zcjj = 26
Max_pump_zcjj = 51
# Y坐标约束条件
Min_pump_bdljd = 26
Max_pump_bdljd = 51
# 靶点位置约束条件
Min_pump_bdwz = 0
Max_pump_bdwz = 1
# 射孔厚度约束条件
Min_pump_skhd = 1
Max_pump_skhd = 5
bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
optimizer = CMA(mean=np.mean(bounds, axis=1), sigma=1, bounds=bounds, seed=0)
max_iterations = 1000 # 最大迭代次数
tolerance = 1e-6 # 目标函数值的变化量阈值
mean_tol = 1e-6 # 均值向量变化量阈值
sigma_tol = 1e-6 # 标准差变化量阈值
best_fitness = float("inf")
best_solution = None
for i in range(max_iterations):
solutions = optimizer.ask()
fitness_list = []
for solution in solutions:
# 计算目标函数的值
fitness = objective_function(solution)
fitness_list.append(fitness)
if fitness < best_fitness:
best_fitness = fitness
best_solution = solution
optimizer.tell(solutions, fitness_list)
# 判断是否满足终止条件
if abs(best_fitness - fitness_list[0]) < tolerance and optimizer.mean_diff < mean_tol and optimizer.sigma < sigma_tol:
break
print("优化完成!")
print("最优解为:", best_solution)
print("最优解的目标函数值为:", best_fitness)
def objective_function(solution):
# 计算目标函数的值
return # 目标函数的值,根据实际情况进行定义
if __name__ == '__main__':
main()
```
在修改后的代码中,使用了一个for循环来进行优化搜索,而不是直接使用optimizer.optimize()方法。在每次迭代中,都会计算出当前所有解的目标函数的值,并将最优解和最优解的目标函数值进行更新。
在每次迭代中,会检查是否满足终止条件。如果满足,则跳出循环,否则继续进行下一次迭代。需要注意的是,在本例中,终止条件的设置可能需要根据实际情况进行微调。
阅读全文