构建softmax回归模型并用python代码完成softmax回归训练
时间: 2023-11-16 08:55:33 浏览: 119
softmax回归是一种常用的分类模型,它是一个单层神经网络,通过对输入数据进行线性变换和softmax函数的运算,得到每个类别的概率分布,从而进行分类。在Python中,我们可以使用numpy和pytorch等库来实现softmax回归模型。
下面是使用pytorch实现softmax回归模型的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor
# 获取Fashion-MNIST数据集
train_data = FashionMNIST(root='./data', train=True, transform=ToTensor(), download=True)
test_data = FashionMNIST(root='./data', train=False, transform=ToTensor(), download=True)
# 定义模型
class SoftmaxRegression(nn.Module):
def __init__(self, input_size, output_size):
super(SoftmaxRegression, self).__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
x = x.view(x.size(0), -1)
out = self.linear(x)
return out
# 训练模型
model = SoftmaxRegression(784, 10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(test_data, batch_size=64, shuffle=False)
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
在上面的代码中,我们首先使用FashionMNIST数据集来训练和测试模型。然后定义了一个SoftmaxRegression类作为模型,其中包含一个线性层和一个softmax函数。在训练模型时,我们使用交叉熵损失函数和随机梯度下降优化器来更新模型参数。最后,在测试模型时,我们计算了模型在测试集上的准确率。
阅读全文
相关推荐













