卷积神经网络模型评价指标
时间: 2024-04-30 11:16:51 浏览: 136
人工智能-基于卷积神经网络的外汇汇率预测.pdf
5星 · 资源好评率100%
卷积神经网络(Convolutional Neural Network,CNN)是一种常用于图像处理和计算机视觉任务的深度学习模型。对于CNN模型的评价指标,常见的包括以下几个方面:
1. 准确率(Accuracy):准确率是最常用的评价指标之一,表示模型在所有样本中正确分类的比例。计算公式为:准确率 = 正确分类的样本数 / 总样本数。
2. 精确率(Precision):精确率衡量了模型在预测为正类的样本中,真正为正类的比例。计算公式为:精确率 = 真正为正类的样本数 / 预测为正类的样本数。
3. 召回率(Recall):召回率衡量了模型在所有真正为正类的样本中,预测为正类的比例。计算公式为:召回率 = 真正为正类的样本数 / 所有真正为正类的样本数。
4. F1值(F1-score):F1值是精确率和召回率的调和平均值,综合考虑了模型的准确性和召回性能。计算公式为:F1值 = 2 * (精确率 * 召回率) / (精确率 + 召回率)。
5. ROC曲线和AUC值:ROC曲线是以假正例率(False Positive Rate,FPR)为横轴,真正例率(True Positive Rate,TPR)为纵轴绘制的曲线。AUC值(Area Under Curve)表示ROC曲线下的面积,用于评估模型的分类性能,AUC值越大表示模型性能越好。
6. 混淆矩阵(Confusion Matrix):混淆矩阵是一种可视化评价指标,用于展示模型在不同类别上的分类结果。它以真实类别和预测类别为基础,将样本分为真正例、假正例、真反例和假反例四个类别,可以直观地了解模型的分类情况。
阅读全文