table = { "test3", "val1" , "val2", "val4" } for pairs 和 for ipairs 的区别
时间: 2024-01-29 19:10:18 浏览: 90
for pairs和for ipairs是Lua编程语言中用于遍历表的两种不同的迭代方式。
for pairs迭代器会遍历表中的所有键值对,并且不保证按照任何特定的顺序进行遍历。它可以遍历表中的所有键和对应的值。例如,对于表a,使用for key, value in pairs(a) do的方式进行遍历,会按照键的任意顺序输出键和对应的值。
for ipairs迭代器则是按照表中的顺序遍历键值对,只遍历整数键。它会从1开始,依次遍历到表中的最后一个整数键。例如,对于表a,使用for key, value in ipairs(a) do的方式进行遍历,会按照键的顺序输出键和对应的值。
所以,对于给定的表table = { "test3", "val1" , "val2", "val4" },使用for pairs迭代器和for ipairs迭代器的区别如下:
使用for pairs迭代器遍历表table:
```lua
for key, value in pairs(table) do
print(key, value)
end
```
输出:
```
1 test3
2 val1
3 val2
4 val4
```
使用for ipairs迭代器遍历表table:
```lua
for key, value in ipairs(table) do
print(key, value)
end
```
输出:
```
1 test3
```
相关问题
for i = 1:ncomp rslt(i).ncomp = i; cal_p = squeeze(cal_preds(i, :)); cal_p = mode(cal_p,1); cal_t = squeeze(cal_trues(i, :)); cal_t = mode(cal_t,1); [cal_confus, rslt_confusionOrder] = confusionmat(cal_t, cal_p); cal_rslt = statsOfMeasure(cal_confus, 0); rslt(i).cal_confus = cal_confus; rslt(i).cal_rslt = cal_rslt; rslt(i).cal_acc = cal_rslt.microAVG(end-1); rslt(i).cal_sen = cal_rslt.microAVG(end-3); rslt(i).cal_spe = cal_rslt.microAVG(end-2); rslt(i).cal_y_true = cal_t; rslt(i).cal_y_pred = cal_p; val_p = squeeze(val_preds(i, :)); val_t = squeeze(val_trues(i, :)); [val_confus, rslt_confusionOrder] = confusionmat(val_t, val_p); val_rslt = statsOfMeasure(val_confus, 0); rslt(i).val_confus = val_confus; rslt(i).val_rslt = val_rslt; rslt(i).val_acc = val_rslt.microAVG(end-1); rslt(i).val_sen = val_rslt.microAVG(end-3); rslt(i).val_spe = val_rslt.microAVG(end-2); rslt(i).val_y_true = val_t; rslt(i).val_y_pred = val_p; mdl = plsda(x_pp, y, i, opts0); trainedModel{i} = mdl; mdl = plsda(x_test_pp,[],i,mdl, opts0); rslt(i).probability = mdl.classification.probability; y_test_pred = mdl.classification.mostprobable; [test_confus, rslt_confusionOrder] = confusionmat(y_test, y_test_pred); test_rslt = statsOfMeasure(test_confus, 0); rslt(i).test_confus = test_confus; rslt(i).test_rslt = test_rslt; rslt(i).test_acc = test_rslt.microAVG(end-1); rslt(i).test_sen = test_rslt.microAVG(end-3); rslt(i).test_spe = test_rslt.microAVG(end-2); rslt(i).test_y_true = y_test; rslt(i).test_y_pred = y_test_pred; 什么意思
这是一段MATLAB代码,其中包含了一些计算分类模型性能指标的代码,包括计算训练集、验证集和测试集的混淆矩阵、精度、敏感度和特异度等指标,并且包含了使用偏最小二乘判别分析(PLSDA)构建分类模型的代码。具体来说,对于每个组件(i=1:ncomp),代码计算训练集、验证集和测试集的分类性能指标,并将结果存储在一个结构体数组(rslt)中。同时,代码使用PLSDA构建分类模型,并将训练集、测试集的真实标签和预测标签也存储在结构体数组中。
val_err = 0 val_batches = 0 preds = [] targ = [] for batch in iterate_minibatches(X_test, y_test, batchsize, shuffle=False): inputs, targets = batch err = val_fn(inputs, targets) val_err += err val_batches += 1 out = test_fn(inputs) [preds.append(i) for i in out] [targ.append(i) for i in targets]
这段代码看起来是进行模型的验证(validation),主要包括以下几个步骤:
1. 初始化变量 `val_err` 和 `val_batches` 为0, `preds` 和 `targ` 分别为预测值和真实值的列表。
2. 对测试数据集进行迭代,每次迭代处理一个大小为 `batchsize` 的数据批次。
3. 将输入数据 `inputs` 和目标标签 `targets` 作为参数传入验证函数 `val_fn()`,返回该批次的损失值 `err`。
4. 将该批次的损失值累加到变量 `val_err` 中,并将 `val_batches` 增加1,用于后续计算平均损失值。
5. 将输入数据 `inputs` 作为参数传入测试函数 `test_fn()`,返回该批次的预测值 `out`。
6. 将该批次的预测值和真实值分别添加到 `preds` 和 `targ` 列表中,用于后续计算评估指标。
最终,该段代码的作用是计算模型在测试数据集上的平均损失值,并将预测值和真实值保存到列表中,以便后续计算评估指标,如准确率、精确率、召回率等。
阅读全文
相关推荐















