transformer空间插值
时间: 2023-08-22 17:04:04 浏览: 179
在语义分割任务中,为了减少Transformer处理的点的数量,可以对原始点云使用多个点的4D卷积层,然后使用PointNet中的特征插值方法对点云特征进行插值。在Transformer之后,可以使用Spatial Transformer Networks (STN)中的仿射变换和双线性插值来进行空间插值。另外,在Transformer后还可以使用max pooling将Transformer输出的局部特征融合成一个单独的全局特征,并使用MLP将全局特征转换成动作预测。因此,Transformer的空间插值可以通过使用STN的仿射变换和双线性插值来实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [使用Transformer提取连续帧点云的时空特征:P4Transformer算法理解](https://blog.csdn.net/qq_37497304/article/details/126804616)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [STN:Spatial Transformer Networks 空间变换网络](https://blog.csdn.net/qq_45122568/article/details/124293622)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文