用MATLAB求解用斐波那契法求函数f(x)=x2-6x+2在区间[0,10]上的极点,要求缩小后的区间长度不要大于区间长度的8%
时间: 2024-03-22 07:42:10 浏览: 58
好的,以下是MATLAB代码实现:
```matlab
% 定义函数f(x)
f = @(x) x.^2 - 6*x + 2;
% 定义搜索区间[0,10]
a = 0;
b = 10;
% 计算斐波那契数列
L = b - a;
k = 1;
F = [1, 1];
while (F(k) < L / 0.08)
F = [F, F(k) + F(k-1)];
k = k + 1;
end
% 计算初始的黄金分割点
x1 = a + (b - a) * F(k-2) / F(k);
x2 = a + (b - a) * F(k-1) / F(k);
% 缩小搜索区间
while L >= (b - a) * 0.08
if f(x1) < f(x2)
b = x2;
x2 = x1;
x1 = a + (b - a) * F(k-2) / F(k);
else
a = x1;
x1 = x2;
x2 = a + (b - a) * F(k-1) / F(k);
end
L = b - a;
end
% 输出结果
x_min = (a + b) / 2;
fprintf("极小点为:%f\n", x_min);
```
希望能帮到你!
相关问题
试用斐波那契法求函数 f(x)=x2-6x+2 在区间[0,10]上的极点,要求缩小后的区间长度不要大于区间长度的8%.用MATLAB求解
好的,以下是MATLAB代码实现:
```matlab
% 定义函数f(x)
f = @(x) x.^2 - 6*x + 2;
% 定义搜索区间[0,10]
a = 0;
b = 10;
% 计算斐波那契数列
L = b - a;
k = 1;
F = [1, 1];
while (F(k) < L / 0.08)
F = [F, F(k) + F(k-1)];
k = k + 1;
end
% 计算初始的黄金分割点
x1 = a + (b - a) * F(k-2) / F(k);
x2 = a + (b - a) * F(k-1) / F(k);
% 缩小搜索区间
while L >= (b - a) * 0.08
if f(x1) < f(x2)
b = x2;
x2 = x1;
x1 = a + (b - a) * F(k-2) / F(k);
else
a = x1;
x1 = x2;
x2 = a + (b - a) * F(k-1) / F(k);
end
L = b - a;
end
% 输出结果
x_min = (a + b) / 2;
fprintf("极小点为:%f\n", x_min);
```
希望能帮到你!
阅读全文
相关推荐














