ProbSparse self-attention与self-attention的区别
时间: 2023-09-26 08:14:42 浏览: 283
ProbSparse self-attention是一种稀疏化的self-attention模型,与传统的self-attention模型有所不同。传统的self-attention模型在计算注意力权重时,需要对所有输入序列的位置进行计算。而ProbSparse self-attention模型则是通过对输入序列进行采样,只对部分序列位置进行计算,从而达到稀疏化的效果。
这种稀疏化的方法能够大幅度减少计算量,提高模型的效率。同时,ProbSparse self-attention模型能够保持与传统self-attention模型相同的性能,因为它在计算注意力权重时,仍然考虑了所有的输入序列位置,只是在计算中进行了采样。
因此,ProbSparse self-attention与传统的self-attention相比,具有更高的效率和同样的性能。
相关问题
cross-attention和 self-attention区别
Cross-attention和self-attention是在Transformer模型中使用的两种注意力机制。它们的区别在于所关注的对象不同。
Self-attention是指模型对输入序列中的每个位置都计算一个权重,用这些权重对所有位置进行加权求和,以获取每个位置在序列中的重要性。在self-attention中,每个位置都可以同时关注到序列中的其他位置,因此可以捕捉到全局的依赖关系。
而cross-attention是指模型在进行注意力计算时,除了考虑输入序列内部的依赖关系,还考虑了与之相关的另一个输入序列。通常在机器翻译任务中,编码器会对源语言序列进行self-attention计算,而解码器在生成目标语言序列时,则需要同时考虑源语言序列的信息,这就需要使用cross-attention来关注源语言序列中与目标位置相关的信息。Cross-attention允许模型根据目标位置的需求来选择源语言序列中的相关部分进行注意力计算,从而更好地捕捉跨序列的依赖关系。
cross-attention 和self-attention区别
交叉注意力(Cross-Attention)和自我注意力(Self-Attention)都是注意力机制的一种变体,但在应用场景和作用上有所区分:
**Self-Attention (自注意力)**
- 它是在同一序列内部进行的操作,每个位置都关注到序列中的所有其他位置。
- 在Transformer模型中,自注意力主要是为了捕捉输入序列中的长期依赖关系,每个位置可以获取到全局的信息。
- 自注意力不需要外部输入,只需自身的输入作为查询、键和值。
**Cross-Attention (跨注意力)**
- Cross-Attention则涉及到两个不同的序列,一个称为“主体”(query sequence),另一个称为“源”(key-value sequence)。主体序列的每一个位置会关注源序列中的所有信息。
- 例如,在机器翻译中,主体序列是源语言句子的编码,而源序列是目标语言句子的编码。主体需要了解目标语言的上下文才能进行翻译。
- 与自注意力相比,它更侧重于两组输入之间的交互。
简而言之,自注意力关注的是单一序列内的信息,而交叉注意力则是两个独立序列之间的信息交流。
阅读全文