基于paddle2.0实现知识蒸馏的代码
时间: 2023-07-03 14:32:53 浏览: 107
以下是一个基于PaddlePaddle 2.0实现知识蒸馏的代码示例:
```python
import paddle
import paddle.nn.functional as F
from paddle.vision.models import resnet18
# 加载预训练的教师模型和数据集
teacher_model = resnet18(pretrained=True)
train_dataset = paddle.vision.datasets.Cifar10(mode='train')
val_dataset = paddle.vision.datasets.Cifar10(mode='test')
# 定义学生模型
class StudentModel(paddle.nn.Layer):
def __init__(self):
super(StudentModel, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=3, padding=1)
self.bn1 = paddle.nn.BatchNorm2D(num_features=32)
self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=3, padding=1)
self.bn2 = paddle.nn.BatchNorm2D(num_features=64)
self.pool = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = paddle.nn.Linear(in_features=64*8*8, out_features=512)
self.fc2 = paddle.nn.Linear(in_features=512, out_features=10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool(F.relu(self.bn2(self.conv2(x))))
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
student_model = StudentModel()
# 定义损失函数
def loss_fn(logits, labels, soft_labels, temperature=3.0):
hard_loss = F.cross_entropy(logits, labels)
soft_loss = F.mse_loss(F.softmax(logits/temperature, axis=1), F.softmax(soft_labels/temperature, axis=1))
loss = hard_loss + 0.7 * soft_loss
return loss
# 定义优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=student_model.parameters())
# 训练和测试
for epoch in range(10):
for batch_id, (data, label) in enumerate(train_dataset()):
soft_label = teacher_model(data)
output = student_model(data)
loss = loss_fn(output, label, soft_label)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# 验证集上测试
student_model.eval()
accs = []
for batch_id, (data, label) in enumerate(val_dataset()):
output = student_model(data)
acc = paddle.metric.accuracy(output, label)
accs.append(acc.numpy())
avg_acc = np.mean(accs)
print("Epoch {} - Test Accuracy: {}".format(epoch+1, avg_acc))
student_model.train()
```
在这个代码示例中,我们使用CIFAR-10数据集作为训练和测试数据,使用ResNet-18作为教师模型,使用一个简单的卷积神经网络作为学生模型。损失函数包括交叉熵损失和均方误差损失,其中软标签来自于教师模型的预测结果。我们使用Adam优化器进行参数更新,同时在每个epoch结束后,在验证集上测试学生模型的性能。
阅读全文