如何用pytouch使用resnet101预训练模型进行图片树叶分类的完整代码?
时间: 2024-03-20 07:44:58 浏览: 82
LABVIEW程序实例-DS写属性数据.zip
好的,以下是一个使用PyTorch和ResNet101预训练模型进行树叶分类的完整代码示例。请确保你已经安装了PyTorch和其他必需的Python模块。
```python
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torch.autograd import Variable
from PIL import Image
# 定义ResNet101模型
resnet101 = models.resnet101(pretrained=True)
# 冻结所有模型参数
for param in resnet101.parameters():
param.requires_grad = False
# 替换最后一层,使其输出为我们需要的类别数
num_classes = 10
resnet101.fc = nn.Linear(resnet101.fc.in_features, num_classes)
# 定义图像变换
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 读取图像并进行变换
image = Image.open('leaf.jpg')
image_tensor = transform(image)
image_tensor = image_tensor.unsqueeze(0)
# 将图像输入模型并获取预测结果
resnet101.eval()
with torch.no_grad():
output = resnet101(image_tensor)
# 将预测结果转换为概率分布
softmax = nn.Softmax(dim=1)
probs = softmax(output)
# 获取预测结果中概率最大的类别
max_prob, idx = torch.max(probs, dim=1)
print('Predicted class:', idx.item(), 'with probability:', max_prob.item())
```
你需要将代码中的`num_classes`更改为你实际的类别数,并将`leaf.jpg`替换为你要分类的图像文件。运行代码后,它将输出预测的类别和相应的概率。
阅读全文