解释代码:class AE(nn.Module): def __init__(self, features_num=1000, is_predict=False): super(AE, self).__init__() # Encoder self.make_five_conv = nn.Sequential( BasicConv(1, 8, kernel_size=2, stride=2), # 128,128,1 -> 64,64,8 BasicConv(8, 16, kernel_size=2, stride=2), # 64,64,8 -> 32,32,16 BasicConv(16, 32, kernel_size=2, stride=2), # 32,32,16 -> 16,16,32 BasicConv(32, 32, kernel_size=2, stride=2), # 16,16,32 -> 8,8,32 BasicConv(32, 64, kernel_size=2, stride=2), # 8,8,32 -> 4,4,64 ) self.fc1 = nn.Sequential( nn.Linear(4 * 4 * 64, features_num), nn.ReLU(), ) self.fc2 = nn.Sequential( nn.Linear(features_num, 4 * 4 * 64), nn.ReLU(), Reshape(64,4,4),
时间: 2023-10-21 14:03:45 浏览: 108
这段代码定义了一个名为 AE 的类,它继承自 nn.Module。该类是一个自动编码器(Autoencoder),用于实现特征提取和重建的功能。
在类的构造函数中,使用 super() 函数调用父类的构造函数来初始化 AE 类。同时,定义了编码器(Encoder)部分的网络结构和解码器(Decoder)部分的网络结构。
编码器部分包括五个卷积层,每个卷积层后面紧跟一个批量归一化层和激活函数。这些卷积层通过 BasicConv 类来定义。每个 BasicConv 类包含一个二维卷积层和相应的批量归一化层和激活函数。这些卷积层逐步减少特征图的尺寸,并增加特征图的通道数。
在编码器部分的最后,使用全连接层(nn.Linear)将特征图展平,并通过一个 ReLU 激活函数进行非线性变换,得到特征向量。
解码器部分与编码器部分相对应。首先,使用一个全连接层将特征向量映射回原始特征图的大小。然后,通过一个 ReLU 激活函数进行非线性变换。最后,使用 Reshape 类将特征向量重新恢复为原始特征图的形状。
这个类的作用是实现自动编码器,用于特征提取和重建。自动编码器通过编码器将输入数据映射到低维特征空间,然后通过解码器将低维特征重新映射到原始数据的空间,实现对数据的压缩和重建。
相关问题
class R_NN(nn.Module): def __init__(self, in_dim, n_class): super(R_NN, self).__init__() self.logstic = nn.Linear(in_dim, n_class) self.predict=nn.Sigmoid() def forward(self, x): out = self.logstic(x) out = out.squeeze(1) #降维 return out
这段代码是一个定制化的PyTorch神经网络模块。该模块名为R_NN,有两个输入参数:in_dim表示输入数据的维度,n_class表示分类的数量。在初始化函数中,调用了super()函数来获得父类nn.Module的属性和方法,然后定义了一个线性层(logstic)和一个Sigmoid层(predict)。在前向传播函数forward()中,对输入数据x进行线性变换,再使用squeeze()函数将一维的输出向量压缩为一个标量。
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
在这段代码中,可能存在以下错误:
1. 缺少必要的库或模块。
2. training_set 的文件路径是否正确。
3. training_set 的数据处理是否正确。
4. LSTM 模型的定义是否正确。
5. 训练和预测的代码是否正确。
下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
# 读取数据
training_set = pd.read_csv('CX2-36_1971.csv')
training_set = training_set.iloc[:, 1:2].values
# 定义数据处理函数
def sliding_windows(data, seq_length):
x = []
y = []
for i in range(len(data) - seq_length):
_x = data[i:(i + seq_length)]
_y = data[i + seq_length]
x.append(_x)
y.append(_y)
return np.array(x), np.array(y)
# 对数据进行归一化处理
sc = MinMaxScaler()
training_data = sc.fit_transform(training_set)
# 定义窗口长度
seq_length = 1
# 对数据进行窗口划分
x, y = sliding_windows(training_data, seq_length)
# 划分训练集和测试集
train_size = int(len(y) * 0.8)
test_size = len(y) - train_size
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))
trainX = Variable(torch.Tensor(np.array(x[1:train_size])))
trainY = Variable(torch.Tensor(np.array(y[1:train_size])))
testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.num_classes = num_classes
self.num_layers = num_layers
self.input_size = input_size
self.hidden_size = hidden_size
self.seq_length = seq_length
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
# Propagate input through LSTM
ula, (h_out, _) = self.lstm(x, (h_0, c_0))
h_out = h_out.view(-1, self.hidden_size)
out = self.fc(h_out)
return out
# 定义训练参数
num_epochs = 2000
learning_rate = 0.001
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
# 实例化 LSTM 模型
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
# 训练模型
runn = 10
Y_predict = np.zeros((runn, len(dataY)))
for i in range(runn):
print('Run: ' + str(i + 1))
for epoch in range(num_epochs):
outputs = lstm(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
lstm.eval()
train_predict = lstm(dataX)
data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()
# 对结果进行反归一化
data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)
Y_predict[i,:] = np.transpose(np.array(data_predict))
Y_Predict = np.mean(Y_predict, axis=0)
Y_Predict_T = np.transpose(np.array(Y_Predict))
```
阅读全文