把这段代码import math from collections import defaultdict corpus =["二价 二价 二价 四价 预约", "四价 四价 四价 九价 预约", "九价 九价 九价 九价 预约"] words = [] for sentence in corpus: words.append(sentence.strip().split()) # 进行词频统计 def Counter(words): word_count = [] for sentence in words: word_dict = defaultdict(int) for word in sentence: word_dict[word] += 1 word_count.append(word_dict) return word_count word_count = Counter(words) # 计算TF(word代表被计算的单词,word_dict是被计算单词所在句子分词统计词频后的字典) def tf(word, word_dict): return word_dict[word] / sum(word_dict.values()) # 统计含有该单词的句子数 def count_sentence(word, word_count): return sum([1 for i in word_count if i.get(word)]) # i[word] >= 1 # 计算IDF def idf(word, word_count): return math.log((len(word_count) / (count_sentence(word, word_count) + 1)),10) # 计算TF-IDF def tfidf(word, word_dict, word_count): return tf(word, word_dict) * idf(word, word_count) p = 1 for word_dict in word_count: print("part:{}".format(p)) p += 1 for word, cnt in word_dict.items(): print("word: {} ---- TF-IDF:{}".format(word, tfidf(word, word_dict, word_count))) print("word: {} ---- TF:{}".format(word, tf(word, word_dict))) print("word: {} ---- IDF:{}".format(word, idf(word, word_count))) print("word: {} ---- count_sentence:{}".format(word, count_sentence(word, word_count)))中计算idf的def idf(word, word_count)部分改成自定义输入权重[1,2,3]得到最终的改进后的TF-IDF值,请帮我改进一下代码
时间: 2024-03-06 15:50:43 浏览: 201
asp.net 上传下载输出二进制流实现代码
好的,根据您的要求,我修改了代码,将idf的计算方式修改为自定义输入权重[1,2,3],代码如下:
```
import math
from collections import defaultdict
corpus =["二价 二价 二价 四价 预约", "四价 四价 四价 九价 预约", "九价 九价 九价 九价 预约"]
words = []
for sentence in corpus:
words.append(sentence.strip().split())
# 进行词频统计
def Counter(words):
word_count = []
for sentence in words:
word_dict = defaultdict(int)
for word in sentence:
word_dict[word] += 1
word_count.append(word_dict)
return word_count
word_count = Counter(words)
# 计算TF(word代表被计算的单词,word_dict是被计算单词所在句子分词统计词频后的字典)
def tf(word, word_dict):
return word_dict[word] / sum(word_dict.values())
# 统计含有该单词的句子数
def count_sentence(word, word_count):
return sum([1 for i in word_count if i.get(word)]) # i[word] >= 1
# 计算IDF
def idf(word, word_count, weights):
return math.log((len(word_count) / (count_sentence(word, word_count) + 1)),10) * weights[word]
# 计算TF-IDF
def tfidf(word, word_dict, word_count, weights):
return tf(word, word_dict) * idf(word, word_count, weights)
# 自定义权重
weights = {
"二价": 1,
"四价": 2,
"九价": 3,
}
p = 1
for word_dict in word_count:
print("part:{}".format(p))
p += 1
for word, cnt in word_dict.items():
print("word: {} ---- TF-IDF:{}".format(word, tfidf(word, word_dict, word_count, weights)))
print("word: {} ---- TF:{}".format(word, tf(word, word_dict)))
print("word: {} ---- IDF:{}".format(word, idf(word, word_count, weights)))
print("word: {} ---- count_sentence:{}".format(word, count_sentence(word, word_count)))
```
在这个代码中,我们增加了一个新的参数weights,用来存储自定义的权重,然后在idf计算时,乘以相应的权重。最后在计算tfidf时,将权重传递给idf函数即可。
阅读全文