提供一个标准的flink sink scala代码
时间: 2024-05-15 19:15:12 浏览: 163
以下是一个标准的Flink Sink Scala代码,用于将数据流写入Kafka主题:
```
import org.apache.flink.streaming.api.functions.sink.SinkFunction
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
class KafkaSink(brokerList: String, topic: String) extends SinkFunction[String] {
lazy val kafkaProducer = new FlinkKafkaProducer[String](
brokerList, topic, new SimpleStringSchema())
override def invoke(value: String): Unit = {
kafkaProducer.send(value)
}
}
```
在此示例中,我们使用FlinkKafkaProducer将数据流写入Kafka主题。该类需要传入两个参数:Kafka代理列表和要写入的主题名称。我们还定义了一个invoke方法,该方法将每个收到的数据String发送到Kafka主题中。
相关问题
flink1.15 scala sink Cassandra 指数退避重试怎么写
在 Flink 1.15 中使用 Scala 将数据写入 Cassandra 数据库时,可以使用指数退避重试机制来提高数据写入的可靠性。具体实现步骤如下:
1. 引入依赖和配置
在项目的 build.sbt 文件中添加以下依赖:
```
libraryDependencies += "com.datastax.cassandra" % "cassandra-driver-core" % "4.13.0"
```
在程序中添加以下配置:
```scala
import com.datastax.oss.driver.api.core.config.DefaultDriverOption
import com.datastax.oss.driver.api.core.config.DriverConfigLoader
import com.datastax.oss.driver.api.core.config.TypedDriverOption
val config = DriverConfigLoader.fromClasspath("application.conf")
.build.withString(DefaultDriverOption.LOAD_BALANCING_POLICY_CLASS, "RoundRobinPolicy")
.withString(DefaultDriverOption.RETRY_POLICY_CLASS, "com.datastax.oss.driver.api.core.retry.ExponentialBackoffRetryPolicy")
.withInt(TypedDriverOption.RETRY_POLICY_EXONENTIAL_BASE_DELAY, 1000)
.withInt(TypedDriverOption.RETRY_POLICY_MAX_ATTEMPTS, 5)
```
2. 创建 Cassandra 连接
使用上一步中的配置创建 Cassandra 连接:
```scala
import com.datastax.oss.driver.api.core.CqlSession
val session: CqlSession = CqlSession.builder().withConfigLoader(config).build()
```
3. 定义 Cassandra Sink
定义一个 Cassandra Sink,使用指数退避重试机制:
```scala
import org.apache.flink.streaming.api.functions.sink.SinkFunction
import org.apache.flink.streaming.connectors.cassandra.CassandraSinkBuilder
import org.apache.flink.streaming.connectors.cassandra.CassandraSinkOptions
import org.apache.flink.streaming.connectors.cassandra.ClusterBuilder
import com.datastax.oss.driver.api.core.CqlSession
import com.datastax.oss.driver.api.core.cql.{BoundStatement, PreparedStatement, SimpleStatement}
import com.datastax.oss.driver.api.core.retry.RetryPolicy
case class MyData(id: Int, name: String)
class CassandraSink(session: CqlSession) extends SinkFunction[MyData] {
override def invoke(data: MyData): Unit = {
val statement: BoundStatement = session.prepare("INSERT INTO mytable (id, name) VALUES (?, ?)").bind(data.id.asInstanceOf[AnyRef], data.name)
session.execute(statement)
}
}
val cassandraSink: CassandraSink = new CassandraSink(session)
```
4. 使用 Cassandra Sink
将数据写入 Cassandra 数据库时,使用上一步中定义的 Cassandra Sink,并启用重试机制:
```scala
val dataStream: DataStream[MyData] = ???
CassandraSinkBuilder
.builder()
.withSession(session)
.withPreparedStatementSetter((data: MyData, statement: PreparedStatement) => statement.bind(data.id.asInstanceOf[AnyRef], data.name))
.withRetryPolicy(RetryPolicy.defaultExponentialBackoff())
.withMaxConcurrentRequests(2)
.withMaxPendingRequests(10)
.withCassandraOptions(new CassandraSinkOptions())
.build()
.addSink(dataStream)
```
在上述代码中,withRetryPolicy 方法启用了指数退避重试机制,并使用了默认的指数退避重试策略。withMaxConcurrentRequests 和 withMaxPendingRequests 方法可以控制并发请求和等待请求的最大数量。
以上就是在 Flink 1.15 中使用 Scala 实现 Cassandra Sink 指数退避重试机制的方法。
flink 实现mysql cdc scala 代码
以下是使用 Flink 实现 MySQL CDC 的 Scala 代码示例:
```scala
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks
import org.apache.flink.streaming.api.watermark.Watermark
import org.apache.flink.streaming.api.functions.sink.SinkFunction
import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.util.Collector
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala.function.WindowFunction
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.api.common.functions.MapFunction
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.api.java.typeutils.RowTypeInfo
import org.apache.flink.types.Row
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema
import org.apache.flink.streaming.connectors.kafka.KafkaContextAware
import org.apache.flink.streaming.connectors.kafka.KafkaContextAware.KafkaContext
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper
import java.util.Properties
object MySQLCDC {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "flink-group")
val consumer = new FlinkKafkaConsumer011[String]("mysql-cdc", new SimpleStringSchema(), properties)
val stream = env.addSource(consumer).map(new MapFunction[String, Row]() {
override def map(value: String): Row = {
val fields = value.split(",")
Row.of(fields(0).toInt.asInstanceOf[Object], fields(1).asInstanceOf[Object], fields(2).asInstanceOf[Object])
}
}).assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks[Row]() {
override def extractTimestamp(row: Row, previousTimestamp: Long): Long = {
row.getField(0).asInstanceOf[Int].toLong
}
override def checkAndGetNextWatermark(row: Row, extractedTimestamp: Long): Watermark = {
new Watermark(extractedTimestamp)
}
})
val windowedStream = stream.keyBy(1).timeWindow(Time.seconds(10)).apply(new WindowFunction[Row, Row, Tuple, TimeWindow]() {
override def apply(key: Tuple, window: TimeWindow, input: Iterable[Row], out: Collector[Row]): Unit = {
val sortedInput = input.toList.sortBy(_.getField(0).asInstanceOf[Int])
val firstRow = sortedInput.head
val lastRow = sortedInput.last
out.collect(Row.of(firstRow.getField(1), firstRow.getField(2), lastRow.getField(2)))
}
})
val producer = new FlinkKafkaProducer011[String]("mysql-cdc-output", new KafkaSerializationSchema[String]() with KafkaContextAware[String] {
var context: KafkaContext = _
override def serialize(element: String, timestamp: java.lang.Long): org.apache.kafka.clients.producer.ProducerRecord[Array[Byte], Array[Byte]] = {
new org.apache.kafka.clients.producer.ProducerRecord(context.getOutputTopic(), element.getBytes())
}
override def setRuntimeContext(context: KafkaContext): Unit = {
this.context = context
}
}, properties, FlinkKafkaProducer011.Semantic.EXACTLY_ONCE)
windowedStream.map(new MapFunction[Row, String]() {
override def map(row: Row): String = {
s"${row.getField(0)},${row.getField(1)},${row.getField(2)}"
}
}).addSink(producer)
env.execute("MySQL CDC")
}
}
```
阅读全文