用堆叠自编码器对指定文件夹内的图像进行分类并生成混淆矩阵tensorflow代码
时间: 2023-06-09 15:05:07 浏览: 85
tensorflow 用于实现图片分类
首先,需要导入必要的库:
```
import tensorflow as tf
import numpy as np
import os
```
然后,定义一些必要的超参数:
```
num_epochs = 10
batch_size = 32
learning_rate = 0.001
latent_size = 64
num_classes = 10
```
接下来,定义一个函数用于读取文件夹内的图像数据:
```
def load_data(folder):
data = []
labels = []
for subdir in os.listdir(folder):
for file in os.listdir(os.path.join(folder, subdir)):
img = tf.keras.preprocessing.image.load_img(os.path.join(folder, subdir, file), target_size=(128, 128))
img = tf.keras.preprocessing.image.img_to_array(img)
data.append(img)
labels.append(subdir)
return np.asarray(data), np.asarray(labels)
```
然后,准备数据集:
```
train_folder = "train_folder_path"
test_folder = "test_folder_path"
train_data, train_labels = load_data(train_folder)
test_data, test_labels = load_data(test_folder)
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=num_classes)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=num_classes)
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels)).shuffle(len(train_data)).batch(batch_size).prefetch(1)
test_dataset = tf.data.Dataset.from_tensor_slices((test_data, test_labels)).batch(batch_size).prefetch(1)
```
定义堆叠自编码器模型:
```
class Autoencoder(tf.keras.Model):
def __init__(self, latent_size):
super(Autoencoder, self).__init__()
self.encoder = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(filters=128, kernel_size=3, activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(latent_size, activation='relu')
])
self.decoder = tf.keras.Sequential([
tf.keras.layers.Dense(8*8*128, activation='relu'),
tf.keras.layers.Reshape(target_shape=(8, 8, 128)),
tf.keras.layers.Conv2DTranspose(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv2DTranspose(filters=32, kernel_size=3, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv2DTranspose(filters=3, kernel_size=3, padding='same', activation=None)
])
def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded, encoded
```
定义训练过程:
```
autoencoder = Autoencoder(latent_size)
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
for epoch in range(num_epochs):
train_loss = 0.
test_loss = 0.
for batch, (x, _) in enumerate(train_dataset):
with tf.GradientTape() as tape:
recon, _ = autoencoder(x)
loss = tf.keras.losses.mean_squared_error(x, recon)
gradients = tape.gradient(loss, autoencoder.trainable_variables)
optimizer.apply_gradients(zip(gradients, autoencoder.trainable_variables))
train_loss += loss.numpy()
for batch, (x, _) in enumerate(test_dataset):
recon, _ = autoencoder(x)
loss = tf.keras.losses.mean_squared_error(x, recon)
test_loss += loss.numpy()
print('Epoch {} - train loss: {:.4f} - test loss: {:.4f}'.format(epoch+1, train_loss/(batch+1), test_loss/(batch+1)))
```
最后,使用训练好的自编码器进行分类:
```
train_emb = autoencoder.encoder(train_data).numpy()
test_emb = autoencoder.encoder(test_data).numpy()
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[tf.keras.metrics.CategoricalAccuracy()])
model.fit(train_emb, train_labels, epochs=num_epochs, batch_size=batch_size, validation_data=(test_emb, test_labels))
y_pred = model.predict(test_emb)
y_pred = np.argmax(y_pred, axis=1)
y_test = np.argmax(test_labels, axis=1)
confusion_matrix = tf.math.confusion_matrix(y_test, y_pred, num_classes=num_classes)
print(confusion_matrix.numpy())
```
这是一个基本框架,您可能需要根据自己的具体需求进行一些调整。
阅读全文