pytorch代码,读取数据集data.csv,将数据集去除最后一列放入特征集,将数据集的最后一列放入标签集,转换为np格式,保存为csv文件,将特征集按0.7:0.2:0.1的比例分为X_train、X_val和X_test,标签集按0.7:0.2:0.1的比例分为y_train、y_val和y_test
时间: 2024-03-24 08:37:09 浏览: 72
好的,以下是PyTorch代码实现:
```python
import torch
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# 读取数据集
data = pd.read_csv('data.csv')
# 将数据集最后一列放入标签集
y = data.iloc[:, -1].values
# 将数据集去除最后一列放入特征集
X = data.iloc[:, :-1].values
# 将特征集按0.7:0.2:0.1的比例分为训练集、验证集和测试集
X_train, X_val_test, y_train, y_val_test = train_test_split(X, y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.33, random_state=42)
# 将特征集和标签集转换为np格式并保存为csv文件
np.savetxt("X_train.csv", X_train, delimiter=",")
np.savetxt("X_val.csv", X_val, delimiter=",")
np.savetxt("X_test.csv", X_test, delimiter=",")
np.savetxt("y_train.csv", y_train, delimiter=",")
np.savetxt("y_val.csv", y_val, delimiter=",")
np.savetxt("y_test.csv", y_test, delimiter=",")
# 将特征集和标签集转换为tensor格式
X_train_tensor = torch.tensor(X_train).float()
X_val_tensor = torch.tensor(X_val).float()
X_test_tensor = torch.tensor(X_test).float()
y_train_tensor = torch.tensor(y_train).float()
y_val_tensor = torch.tensor(y_val).float()
y_test_tensor = torch.tensor(y_test).float()
```
此代码将数据集按照0.7:0.2:0.1的比例分为训练集、验证集和测试集,并将特征集和标签集转换为np格式,保存为csv文件。然后将特征集和标签集转换为Tensor格式。请将代码复制到您的编辑器中并保存为.py文件,确保数据集文件名与代码中一致。
阅读全文