uint16_t MB_CRC16(uint8_t *pFrame, uint16_t count) { uint8_t CRCHi = 0xFF; uint8_t CRCLo = 0xFF; int32_t index; while(count‐‐) { index = CRCLo ^ *(pFrame++); CRCLo = (uint8_t)(CRCHi ^ _CRCHi[index]); CRCHi = _CRCLo[index]; } return (uint16_t)(CRCHi << 8 | CRCLo ); }

时间: 2024-04-20 16:26:54 浏览: 18
这段代码实现了一个基于CRC16校验算法的函数,用于计算输入数据的校验值。函数的参数是一个指向输入数据缓冲区的指针和输入数据的长度。函数返回一个16位的校验值。该函数使用了一个名为_CRCHi和一个名为_CRCLo的查找表,其中_CRCHi是CRC高位查找表,_CRCLo是CRC低位查找表。 函数的实现过程是:首先初始化CRCHi和CRCLo为0xFF;然后对输入数据进行遍历,每次取出一个字节并与CRCLo进行异或运算,得到一个索引值;然后使用_CRCHi和_CRCLo查找表中的对应值更新CRCHi和CRCLo的值;最后返回计算得到的校验值。 注意:该函数并没有进行输入数据的合法性验证,因此在使用时需要确保输入数据的正确性。
相关问题

ffmpeg 中read_packet怎么正确使用fifo读数据 给个示例

在 FFmpeg 中,可以使用 AVFifoBuffer 结构体实现 FIFO 缓冲区的功能,然后使用 av_read_frame 函数读取数据包,并将数据包写入 FIFO 缓冲区中。下面是一个示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <libavcodec/avcodec.h> #include <libavformat/avformat.h> #include <libavutil/avutil.h> #define MAX_AUDIO_FRAME_SIZE 192000 int main(int argc, char *argv[]) { AVFormatContext *pFormatCtx = NULL; int audioStream = -1; AVCodecContext *pCodecCtx = NULL; AVCodec *pCodec = NULL; AVPacket packet; AVFrame *pFrame = NULL; uint8_t *out_buffer = NULL; AVFifoBuffer *fifo_buffer = NULL; int out_buffer_size; int frame_count = 0; if (argc < 2) { printf("Usage: %s <input file>\n", argv[0]); return -1; } av_register_all(); avformat_network_init(); // 打开输入文件并读取文件头 if (avformat_open_input(&pFormatCtx, argv[1], NULL, NULL) != 0) { printf("Error: could not open input file.\n"); return -1; } // 获取流信息 if (avformat_find_stream_info(pFormatCtx, NULL) < 0) { printf("Error: could not find stream information.\n"); return -1; } // 查找音频流 for (int i = 0; i < pFormatCtx->nb_streams; i++) { if (pFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) { audioStream = i; break; } } if (audioStream == -1) { printf("Error: could not find audio stream.\n"); return -1; } // 获取音频解码器 pCodec = avcodec_find_decoder(pFormatCtx->streams[audioStream]->codecpar->codec_id); if (pCodec == NULL) { printf("Error: could not find audio decoder.\n"); return -1; } // 打开音频解码器 pCodecCtx = avcodec_alloc_context3(pCodec); if (avcodec_parameters_to_context(pCodecCtx, pFormatCtx->streams[audioStream]->codecpar) < 0) { printf("Error: could not copy codec parameters to decoder context.\n"); return -1; } if (avcodec_open2(pCodecCtx, pCodec, NULL) < 0) { printf("Error: could not open audio decoder.\n"); return -1; } // 初始化 FIFO 缓冲区 fifo_buffer = av_fifo_alloc(MAX_AUDIO_FRAME_SIZE * 10); if (fifo_buffer == NULL) { printf("Error: could not allocate FIFO buffer.\n"); return -1; } // 初始化音频帧 pFrame = av_frame_alloc(); if (pFrame == NULL) { printf("Error: could not allocate audio frame.\n"); return -1; } // 计算音频数据的输出缓冲区大小 out_buffer_size = av_samples_get_buffer_size(NULL, pCodecCtx->channels, MAX_AUDIO_FRAME_SIZE, pCodecCtx->sample_fmt, 0); out_buffer = (uint8_t *)av_malloc(out_buffer_size); if (out_buffer == NULL) { printf("Error: could not allocate output buffer.\n"); return -1; } // 读取音频数据并写入 FIFO 缓冲区 while (av_read_frame(pFormatCtx, &packet) >= 0) { if (packet.stream_index == audioStream) { // 解码音频数据 int ret = avcodec_send_packet(pCodecCtx, &packet); while (ret >= 0) { ret = avcodec_receive_frame(pCodecCtx, pFrame); if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { break; } else if (ret < 0) { printf("Error: could not decode audio frame.\n"); return -1; } // 将解码后的音频数据写入 FIFO 缓冲区 av_fifo_generic_write(fifo_buffer, pFrame->data[0], pFrame->linesize[0], NULL); } } av_packet_unref(&packet); } // 从 FIFO 缓冲区中读取数据 while (av_fifo_size(fifo_buffer) >= out_buffer_size) { av_fifo_generic_read(fifo_buffer, out_buffer, out_buffer_size, NULL); // 处理读取到的音频数据 frame_count++; } // 释放资源 av_fifo_free(fifo_buffer); av_free(out_buffer); av_frame_free(&pFrame); avcodec_free_context(&pCodecCtx); avformat_close_input(&pFormatCtx); printf("Processed %d audio frames.\n", frame_count); return 0; } ``` 上述代码中,首先使用 av_read_frame 函数读取音频数据,并通过 av_fifo_generic_write 函数将解码后的音频数据写入 FIFO 缓冲区中。然后使用 av_fifo_generic_read 函数从 FIFO 缓冲区中读取数据,并进行后续处理。 需要注意的是,FIFO 缓冲区的大小应该足够大,以免因 FIFO 缓冲区空间不足而导致数据丢失。另外,FIFO 缓冲区的读写操作应该在不同的线程中进行,否则可能会导致死锁或竞争条件。

生成一个qt下使用opencv 进行 rtmp推流 其中包含 rtmp_sendpacket 例程

很高兴能为您提供帮助,以下是生成一个Qt下使用OpenCV进行rtmp推流的步骤和例程: 步骤: 1.安装OpenCV,可以从OpenCV官网下载对应的版本进行安装。 2.下载并安装FFmpeg,可以从FFmpeg官网下载对应的版本进行安装。 3.在Qt中配置OpenCV和FFmpeg,在项目.pro文件中添加以下代码: ``` INCLUDEPATH += [OpenCV的include目录] LIBS += -L[OpenCV的lib目录] -lopencv_core -lopencv_highgui -lopencv_imgproc -lopencv_videoio -lopencv_imgcodecs INCLUDEPATH += [FFmpeg的include目录] LIBS += -L[FFmpeg的lib目录] -lavcodec -lavdevice -lavfilter -lavformat -lavutil -lswresample -lswscale -lavcodec ``` 4.编写rtmp推流代码,示例代码如下: ``` #include <opencv2/opencv.hpp> #include <libavcodec/avcodec.h> #include <libavformat/avformat.h> #include <libavutil/opt.h> #include <libavutil/imgutils.h> #include <libswscale/swscale.h> #define STREAM_URL "rtmp://[推流地址]" using namespace cv; int main() { AVFormatContext *pFormatCtx; AVOutputFormat *fmt; AVStream *video_st; AVCodecContext *pCodecCtx; AVCodec *pCodec; AVFrame *pFrame, *pFrameRGB; uint8_t *buffer; int videoindex = -1; int framecnt = 0; int64_t start_time = 0; struct SwsContext *img_convert_ctx; // OpenCV读取视频文件 VideoCapture capture(0); if(!capture.isOpened()) { printf("OpenCV: Could not open camera.\n"); return -1; } // 初始化FFmpeg av_register_all(); // 初始化输出格式 avformat_alloc_output_context2(&pFormatCtx, NULL, "flv", STREAM_URL); if(!pFormatCtx) { printf("FFmpeg: Could not allocate output context.\n"); return -1; } fmt = pFormatCtx->oformat; // 添加视频流 video_st = avformat_new_stream(pFormatCtx, 0); if(!video_st) { printf("FFmpeg: Could not create new stream.\n"); return -1; } videoindex = video_st->index; // 设置编码器参数 pCodecCtx = video_st->codec; pCodecCtx->codec_id = fmt->video_codec; pCodecCtx->codec_type = AVMEDIA_TYPE_VIDEO; pCodecCtx->pix_fmt = AV_PIX_FMT_YUV420P; pCodecCtx->width = capture.get(CV_CAP_PROP_FRAME_WIDTH); pCodecCtx->height = capture.get(CV_CAP_PROP_FRAME_HEIGHT); pCodecCtx->time_base.num = 1; pCodecCtx->time_base.den = 25; // 查找编码器 pCodec = avcodec_find_encoder(pCodecCtx->codec_id); if(!pCodec) { printf("FFmpeg: Could not find encoder.\n"); return -1; } // 打开编码器 if(avcodec_open2(pCodecCtx, pCodec, NULL) < 0) { printf("FFmpeg: Could not open encoder.\n"); return -1; } // 分配视频帧内存 pFrame = av_frame_alloc(); pFrameRGB = av_frame_alloc(); // 分配视频帧缓冲区内存 int numBytes = av_image_get_buffer_size(AV_PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height, 1); buffer = (uint8_t *)av_malloc(numBytes * sizeof(uint8_t)); av_image_fill_arrays(pFrame->data, pFrame->linesize, buffer, AV_PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height, 1); // 分配视频帧RGB缓冲区内存 uint8_t *rgbBuffer = (uint8_t *)av_malloc(av_image_get_buffer_size(AV_PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height, 1)); av_image_fill_arrays(pFrameRGB->data, pFrameRGB->linesize, rgbBuffer, AV_PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height, 1); // 初始化图像转换上下文 img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, AV_PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height, AV_PIX_FMT_YUV420P, SWS_BICUBIC, NULL, NULL, NULL); // 输出格式信息 av_dump_format(pFormatCtx, 0, STREAM_URL, 1); // 打开输出URL if(!(fmt->flags & AVFMT_NOFILE)) { if(avio_open(&pFormatCtx->pb, STREAM_URL, AVIO_FLAG_WRITE) < 0) { printf("FFmpeg: Could not open output URL.\n"); return -1; } } // 写入头部 avformat_write_header(pFormatCtx, NULL); while(capture.read(pFrameRGB->data[0])) { // RGB转YUV sws_scale(img_convert_ctx, pFrameRGB->data, pFrameRGB->linesize, 0, pCodecCtx->height, pFrame->data, pFrame->linesize); // 视频帧时间 AVRational time_base = {1, 1000}; int64_t pts = framecnt * (pCodecCtx->time_base.den * 1000 / pCodecCtx->time_base.num) / 25; pFrame->pts = av_rescale_q(pts, time_base, video_st->time_base); pFrame->key_frame = 1; // 编码并推送视频帧 AVPacket pkt; int ret = avcodec_send_frame(pCodecCtx, pFrame); if(ret < 0) { printf("FFmpeg: Error sending frame.\n"); break; } while(ret >= 0) { ret = avcodec_receive_packet(pCodecCtx, &pkt); if(ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { break; } else if(ret < 0) { printf("FFmpeg: Error encoding frame.\n"); return -1; } // 发送视频帧Packet av_packet_rescale_ts(&pkt, pCodecCtx->time_base, video_st->time_base); pkt.stream_index = videoindex; ret = av_interleaved_write_frame(pFormatCtx, &pkt); av_packet_unref(&pkt); } // 输出进度信息 printf("FFmpeg: Encode frame index:%d\n", framecnt); framecnt++; // 推流时间 if(start_time == 0) { start_time = av_gettime(); } int64_t now_time = av_gettime() - start_time; int64_t duration = framecnt * pCodecCtx->time_base.num * 1000 / pCodecCtx->time_base.den; if(now_time < duration) { av_usleep(duration - now_time); } } // 写入尾部 av_write_trailer(pFormatCtx); // 释放内存 avcodec_close(pCodecCtx); av_free(pCodecCtx); av_frame_free(&pFrame); av_frame_free(&pFrameRGB); av_free(buffer); av_free(rgbBuffer); avio_close(pFormatCtx->pb); avformat_free_context(pFormatCtx); return 0; } ``` 注:在实际使用中需要将[推流地址]替换为实际的地址。 这是一个简单的例程,仅供参考,具体实现方式还需要根据实际情况进行调整和完善。

相关推荐

最新推荐

recommend-type

FFmpeg编译出错undefined reference to `img_convert’的解决方法

sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame-&gt;data, pFrame-&gt;linesize, 0, pCodecCtx-&gt;height, pFrameRGB-&gt;data, pFrameRGB-&gt;linesize); ``` 经过修改后,编译正常,测试后程序可用。 此外,...
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

时间序列大模型的研究进展

时间序列大模型是近年来自然语言处理领域的一个热门研究方向,它们专注于理解和生成基于时间顺序的数据,比如文本序列、音频或视频信号。这类模型通常结合了Transformer架构(如BERT、GPT等)与循环神经网络(RNNs, LSTM)的长短期记忆能力,以捕捉序列数据中的时间依赖性。 近期的研究进展包括: 1. 长序列建模:研究人员一直在努力提高模型能够处理长序列的能力,例如M6和Turing-NLG,这些模型扩展了序列长度限制,增强了对长期依赖的理解。 2. 结合外部知识:一些模型开始融合外部知识库,如ProphetNet和D-PTM,以提升对复杂时间序列的预测精度。 3. 强化学习和
recommend-type

计算机基础知识试题与解析

"这份文档是计算机基础知识的试题集,包含了多项选择题,涵盖了计算机系统的构成、键盘功能、数据单位、汉字编码、开机顺序、程序类型、计算机病毒、内存分类、计算机网络的应用、计算机类型、可执行语言、存储器角色、软件类别、操作系统归属、存储容量单位、网络类型以及微机发展的标志等多个知识点。" 1. 计算机系统由硬件系统和软件系统组成,A选项仅提及计算机及外部设备,B选项提到了一些外部设备但不完整,C选项正确,D选项将硬件和软件混淆为系统硬件和系统软件。 2. ENTER键在计算机中是回车换行键,用于确认输入或换行,B选项正确。 3. Bit是二进制位的简称,是计算机中最基本的数据单位,A选项正确;字节Byte是8个Bit组成的单位,C选项的字节是正确的,但题目中问的是Bit。 4. 汉字国标码GB2312-80规定,每个汉字用两个字节表示,B选项正确。 5. 微机系统的开机顺序通常是先开启外部设备(如显示器、打印机等),最后开启主机,D选项符合这一顺序。 6. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能运行,A选项正确。 7. 微机病毒是指特制的、具有破坏性的小程序,可以影响计算机的正常运行,D选项正确。 8. 微型计算机的运算器、控制器及内存的总称是CPU,A选项错误,应是C选项的主机。 9. 软磁盘(软盘)中的信息在断电后不会丢失,因为它是非易失性存储,A选项正确。 10. 计算机网络的最大好处是实现资源共享,C选项正确。 11. 个人计算机通常指的是微机,D选项正确。 12. 微机唯一能直接识别和处理的语言是机器语言,D选项正确。 13. 计算机存储器是记忆部件,用于存储数据和指令,D选项正确。 14. 人事档案管理程序属于应用软件,专门用于特定用途,B选项正确。 15. DOS在计算机中属于系统软件,负责管理和控制计算机硬件和软件资源,C选项正确。 16. 反映计算机存储容量的基本单位是字节,B选项正确。 17. LAN网指的是局域网,A选项正确。 18. 微型计算机的发展主要以微处理器的发展为特征,C选项正确。 以上是对试题中涉及的计算机基础知识的详细解析。这些知识点构成了计算机科学的基础,并且对于理解和操作计算机系统至关重要。