KL信息与FCM算法的MATLAB程序
时间: 2023-12-06 08:45:45 浏览: 85
Matlab实现FCM算法
5星 · 资源好评率100%
KL信息与FCM算法都是聚类算法,但它们的实现方式有所不同。以下是KL信息与FCM算法的MATLAB程序示例。
KL信息聚类算法:
```matlab
% 数据准备
data = [1.2 2.0; 1.4 1.6; 1.6 1.2; 2.0 1.4; 3.0 3.0; 3.2 2.6; 3.6 2.0; 4.0 3.0];
% 初始化中心点
center = [1.2 2.0; 4.0 3.0];
% 设置聚类个数
k = 2;
% 迭代次数
iter_num = 10;
for iter = 1:iter_num
% 计算数据点与中心点之间的KL散度
D = pdist2(data, center, 'KL');
% 使用KL散度进行聚类
[~, label] = min(D, [], 2);
% 更新中心点
for i = 1:k
center(i, :) = mean(data(label == i, :));
end
end
% 绘制聚类结果
figure;
scatter(data(label == 1, 1), data(label == 1, 2), 'r');
hold on;
scatter(data(label == 2, 1), data(label == 2, 2), 'b');
scatter(center(:, 1), center(:, 2), 100, 'k', 'filled');
```
FCM聚类算法:
```matlab
% 数据准备
data = [1.2 2.0; 1.4 1.6; 1.6 1.2; 2.0 1.4; 3.0 3.0; 3.2 2.6; 3.6 2.0; 4.0 3.0];
% 设置聚类个数
k = 2;
% 迭代次数
iter_num = 10;
% 初始化隶属度矩阵
U = rand(k, size(data, 1));
U = bsxfun(@rdivide, U, sum(U, 1));
for iter = 1:iter_num
% 更新聚类中心点
center = (U.^2 * data) ./ sum(U.^2, 2);
% 计算隶属度矩阵
D = pdist2(data, center, 'euclidean');
U = bsxfun(@rdivide, 1./D, sum(1./D, 2));
% 控制隶属度矩阵的范围
U = max(U, eps);
U = bsxfun(@rdivide, U, sum(U, 1));
end
% 计算聚类标签
[~, label] = max(U, [], 1);
% 绘制聚类结果
figure;
scatter(data(label == 1, 1), data(label == 1, 2), 'r');
hold on;
scatter(data(label == 2, 1), data(label == 2, 2), 'b');
scatter(center(:, 1), center(:, 2), 100, 'k', 'filled');
```
阅读全文