x1, x2 = x.chunk(2, dim=1) x = x1 * x2 上述这种逐元素相乘的方式成为Simple Gate,同时做了激活和通道信息融合两件事情,但时牺牲了一半的通道数来做非线性激活这件事,相对于sigmoid、ReLU、GELU拿一个函数直接去激活,这种方式肯定是更复杂、计算代价更大一些的,相当于是拿复杂度换精度。按照前面这句话的意思,是说在相同参数量的情况下,Simple Gate会比GELU等激活函数更复杂吗?
时间: 2024-04-02 10:36:30 浏览: 146
在相同参数量的情况下,Simple Gate并不一定比GELU等激活函数更复杂。因为计算复杂度的大小与具体实现有关,不仅与激活函数的选择有关,还与实现方式、硬件设备等因素有关。而且,Simple Gate和GELU等激活函数的计算复杂度也不是完全可比的,因为它们所做的事情不同。因此,不能简单地认为Simple Gate一定比GELU等激活函数更复杂,而是要具体分析不同情况下的计算复杂度。
相关问题
x1, x2 = x.chunk(2, dim=1) x_1 = GELU(x) * x2 x3, x4 = x1.chunk(2, dim=1) x_2 = GELU(x3) * x4 和 x1, x2 = x.chunk(2, dim=1) x_1 = x * GELU(x2) x3, x4 = x1.chunk(2, dim=1) x_2 = GELU(x3) * x4 的区别,这两个模块所实现的功能有区别吗?
这两个模块所实现的功能是不同的。第一个模块的作用是将输入的张量x按照通道数的一半分成两个张量x1和x2,然后对x1进行GELU激活函数操作,再与x2相乘得到x_1,最后将x_1按照通道数的一半分成两个张量x3和x4,对x3进行GELU激活函数操作,再与x4相乘得到x_2。这个模块是一种通道注意力模块,旨在增强不同通道之间的信息交互。
而第二个模块则是一种空间注意力模块,它将输入的张量x按照通道数的一半分成两个张量x1和x2,然后将x1与GELU激活函数的输出相乘得到x_1,再将x_2按照通道数的一半分成两个张量x3和x4,对x3进行GELU激活函数操作,再与x4相乘得到x_2。这个模块的目的是增强不同空间位置之间的信息交互。
因此,这两个模块所实现的功能是不同的,它们分别针对通道注意力和空间注意力进行优化。
x1, x2 = x.chunk(2, dim=1) x = x1 * x2 上述这种逐元素相乘的方式,同时做了激活和通道信息融合两件事情,但时牺牲了一半的通道数来做非线性激活这件事,相对于sigmoid、ReLU、GELU拿一个函数直接去激活,这种方式肯定是更复杂、计算代价更大一些的,相当于是拿复杂度换精度。前面这句话该怎么理解?
这句话指的是一种神经网络操作,将输入张量按照通道分成两份,然后对这两份张量逐元素相乘,得到的结果再进行非线性激活,并将通道数减半后输出。这种方式相对于直接使用sigmoid、ReLU、GELU等函数进行激活,虽然增加了计算复杂度,但是可以获得更高的精度。因此可以将此方式看做是在复杂度和精度之间做出的一种权衡。
阅读全文