将以上数据集进行介绍和可视化, 数据集拆分介绍 ,模型原理介绍, 模型训练 ,模型验证和指标计算、曲线绘图 ,整体结果分析代码
时间: 2023-12-09 22:02:46 浏览: 75
很抱歉,我是一个语言模型AI,无法提供完整的代码,但我可以给你提供一些参考的代码片段,帮助你更好地理解这些过程。
数据集介绍和可视化:
```
# 导入必要的库
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据集
data = pd.read_csv('movie_data.csv')
# 统计各个类型的电影数量
genre_counts = data['genres'].str.split('|').apply(pd.Series).stack().value_counts()
# 绘制电影类型分布饼图
genre_counts.plot(kind='pie', autopct='%1.1f%%', figsize=(10, 10))
plt.title('Movie Genre Distribution')
plt.show()
# 绘制电影评分分布直方图
plt.hist(data['vote_average'], bins=20)
plt.title('Movie Rating Distribution')
plt.xlabel('Rating')
plt.ylabel('Number of Movies')
plt.show()
# 统计不同导演的电影数量
director_counts = data['director'].value_counts().head(10)
# 绘制不同导演电影数量条形图
director_counts.plot(kind='bar', figsize=(10, 10))
plt.title('Top 10 Directors by Number of Movies')
plt.xlabel('Director')
plt.ylabel('Number of Movies')
plt.show()
# 统计不同演员的电影数量
actor_counts = data['cast'].str.split('|').apply(pd.Series).stack().value_counts().head(10)
# 绘制不同演员电影数量条形图
actor_counts.plot(kind='bar', figsize=(10, 10))
plt.title('Top 10 Actors by Number of Movies')
plt.xlabel('Actor')
plt.ylabel('Number of Movies')
plt.show()
```
数据集拆分:
```
# 导入必要的库
from sklearn.model_selection import train_test_split
# 读取数据集
data = pd.read_csv('movie_data.csv')
# 拆分数据集
train_data, temp_data = train_test_split(data, test_size=0.2, random_state=42)
valid_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
```
模型原理:
```
# 导入必要的库
import tensorflow as tf
# 构建模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=[len(features)]),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation='sigmoid')
])
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(train_data[features], train_data[target], validation_data=(valid_data[features], valid_data[target]), epochs=50, batch_size=128)
```
模型验证和指标计算、曲线绘图:
```
# 计算模型指标
train_loss, train_acc = model.evaluate(train_data[features], train_data[target])
valid_loss, valid_acc = model.evaluate(valid_data[features], valid_data[target])
test_loss, test_acc = model.evaluate(test_data[features], test_data[target])
# 绘制学习曲线和验证曲线
plt.plot(history.history['accuracy'], label='train_accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
```
整体结果分析:
```
# 导入必要的库
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# 计算模型指标
train_pred = model.predict(train_data[features])
train_pred = [1 if x >= 0.5 else 0 for x in train_pred]
valid_pred = model.predict(valid_data[features])
valid_pred = [1 if x >= 0.5 else 0 for x in valid_pred]
test_pred = model.predict(test_data[features])
test_pred = [1 if x >= 0.5 else 0 for x in test_pred]
train_acc = accuracy_score(train_data[target], train_pred)
valid_acc = accuracy_score(valid_data[target], valid_pred)
test_acc = accuracy_score(test_data[target], test_pred)
train_precision = precision_score(train_data[target], train_pred)
valid_precision = precision_score(valid_data[target], valid_pred)
test_precision = precision_score(test_data[target], test_pred)
train_recall = recall_score(train_data[target], train_pred)
valid_recall = recall_score(valid_data[target], valid_pred)
test_recall = recall_score(test_data[target], test_pred)
train_f1 = f1_score(train_data[target], train_pred)
valid_f1 = f1_score(valid_data[target], valid_pred)
test_f1 = f1_score(test_data[target], test_pred)
print('Train Accuracy:', train_acc)
print('Valid Accuracy:', valid_acc)
print('Test Accuracy:', test_acc)
print('Train Precision:', train_precision)
print('Valid Precision:', valid_precision)
print('Test Precision:', test_precision)
print('Train Recall:', train_recall)
print('Valid Recall:', valid_recall)
print('Test Recall:', test_recall)
print('Train F1 Score:', train_f1)
print('Valid F1 Score:', valid_f1)
print('Test F1 Score:', test_f1)
```
希望以上的代码片段能够对你有所帮助。
阅读全文