stm32从一路adc采集到的电压值,用串口发送出来,精度为0.1,每隔一秒发送一次,发送时间用定时器定时,误差不超过0.1v

时间: 2024-05-23 17:09:29 浏览: 21
回答:要实现这个功能,需要按照以下步骤进行操作: 1. 配置ADC输入引脚和转换参数,调用HAL_ADC_Start_IT()函数启动ADC转换,并在HAL_ADC_ConvCpltCallback()中处理转换结果。 2. 在溢出中断中启动定时器,设定定时器的周期为1秒,同时开启定时器中断,调用HAL_UART_Transmit_IT()函数发送ADC转换结果到串口上。 3. 在定时器中断中,重复第二步中的操作。 需要注意的是,为了保证精度不超过0.1V,在使用ADC进行采样时,应该选择足够高的分辨率和参考电压,同时尽可能减小采样误差。发送时也需要注意转换结果的精度问题,保留一位小数,并使用正确的数据类型进行转换。
相关问题

用stm32从一路adc采集到的电压值,并用串口发送出来,精度0.1v,每隔一秒发送一次,发送时间用定时器定时。采集电压为0到3.3v范围内的任意电压,误差不超过0.1V。

您可以使用以下代码实现: #include "stm32f10x.h" #include "stdio.h" void USART1_Init(void); void ADC1_Init(void); void TIM2_Init(void); void delay_ms(u16 nms); int main(void) { USART1_Init(); ADC1_Init(); TIM2_Init(); while(1) { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); u16 adc_value = ADC_GetConversionValue(ADC1); float voltage = (float)adc_value / 4096 * 3.3; printf("Voltage: %.1fV\r\n", voltage); delay_ms(1000); } } void USART1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); } void ADC1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5); ADC_Cmd(ADC1, ENABLE); } void TIM2_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = 7199; TIM_TimeBaseStructure.TIM_Prescaler = 9999; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_Cmd(TIM2, ENABLE); } void delay_ms(u16 nms) { u32 i, j; for(i = 0; i < nms; i++) for(j = 0; j < 2000; j++); } 在这个代码中,我们使用了STM32的ADC模块来采集电压值,并使用USART模块通过串口发送出来。我们还使用了定时器来控制发送时间间隔。

如何用stm32从一路adc采集到的电压用串口发送出来

要从STM32的一路ADC采集电压并通过串口发送,您可以使用以下步骤: 1. 配置ADC: 首先,您需要配置ADC模块以使其能够采集电压。您需要设置ADC通道,采样时间和分辨率等参数。 2. 启动ADC: 一旦配置完成,您可以启动ADC模块以开始采集电压。可以使用HAL库提供的函数来启动ADC。 3. 读取ADC值: 一旦ADC开始采集电压,您可以使用HAL库提供的函数来读取ADC值。 4. 将ADC值转换为电压值: 由于ADC采样的是模拟信号,因此需要将ADC值转换为电压值。此转换需要根据您的电路和ADC设置来完成。 5. 发送电压值: 一旦您已经将ADC值转换为电压值,您可以使用UART串口发送电压值。可以使用HAL库提供的函数来实现串口通信。 以下是一个简单的伪代码示例: ```c #include "stm32f1xx_hal.h" #include <stdio.h> // 定义串口句柄 UART_HandleTypeDef huart; // 定义ADC句柄 ADC_HandleTypeDef hadc; // 定义ADC采样值和电压值 uint16_t adc_value; float voltage; int main(void) { // 初始化HAL库 HAL_Init(); // 配置串口 huart.Instance = USART1; huart.Init.BaudRate = 9600; huart.Init.WordLength = UART_WORDLENGTH_8B; huart.Init.StopBits = UART_STOPBITS_1; huart.Init.Parity = UART_PARITY_NONE; huart.Init.Mode = UART_MODE_TX_RX; huart.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart.Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(&huart); // 配置ADC hadc.Instance = ADC1; hadc.Init.ScanConvMode = DISABLE; hadc.Init.ContinuousConvMode = ENABLE; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.NbrOfConversion = 1; HAL_ADC_Init(&hadc); // 配置ADC通道 ADC_ChannelConfTypeDef sConfig; sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; HAL_ADC_ConfigChannel(&hadc, &sConfig); // 启动ADC HAL_ADC_Start(&hadc); while (1) { // 读取ADC值 HAL_ADC_PollForConversion(&hadc, 100); adc_value = HAL_ADC_GetValue(&hadc); // 将ADC值转换为电压值 voltage = (float)adc_value * 3.3 / 4096.0; // 发送电压值 char buffer[20]; sprintf(buffer, "%.2f\r\n", voltage); HAL_UART_Transmit(&huart, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY); // 延时一段时间 HAL_Delay(1000); } } ``` 在此示例中,我们使用USART1串口和ADC1模块,我们配置ADC1的通道为ADC_CHANNEL_0,采样时间为ADC_SAMPLETIME_13CYCLES_5,分辨率为12位。我们将ADC1设置为连续采样模式,并在while循环中读取ADC值,并将其转换为电压值,然后将其发送到串口中。最后,我们使用HAL_Delay函数延迟1秒钟,以便我们可以观察到电压值的变化。

相关推荐

最新推荐

recommend-type

STM32串口发送注意问题

STM32串口发送注意问题 在使用STM32串口发送数据时,可能会遇到TC状态位引起的错误。该错误会导致第一个发送的数据丢失。为解决这个问题,需要了解TC状态位的性质和作用。 TC状态位是USART中的一个标志位,当串口...
recommend-type

STM32串口通信中使用printf发送数据配置方法

STM32串口通信中使用printf发送数据配置方法 STM32串口通信中使用printf发送数据配置方法是非常方便的。然而,在刚开始使用的时候总是遇到问题,常见的是硬件访真时无法进入main主函数。事实上只要简单的配置一下就...
recommend-type

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客.pdf

在本文中,我们将深入探讨如何在STM32中使用多通道ADC(模拟数字转换器)通过DMA(直接内存访问)方式进行数据采集。 在STM32中,ADC(模拟数字转换器)用于将模拟信号转换为数字信号,以便微控制器能够处理这些...
recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

STM32 DMA 中断模式下 ADC 多通道数据采集+均值滤波 本资源涉及到 STM32 的 DMA 中断模式下 ADC 多通道数据采集和均值滤波。下面将详细介绍相关知识点: 1. STM32 DMA 中断模式 STM32 的 DMA(Direct Memory ...
recommend-type

STM32 ADC采样

STM32 ADC 采样 STM32F103ZET6微控制器内部集成了12位的逐次逼近型模拟数字转换器(Analog-to-Digital Converter,ADC),它有多达18个通道,可以测量16个外部和2个内部信号源。ADC的主要功能是将模拟信号转换成...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。