# Define Network self._model = Model(inputs=init_x, outputs=[self._policy, self._value]) # Define the Loss Function opt = SGD(lr=self._lr, momentum=self._momentum, nesterov=True) # stochastic gradient descend with momentum losses_type = ['categorical_crossentropy', 'mean_squared_error'] # cross-entrophy and MSE are weighted equally self._model.compile(optimizer=opt, loss=losses_type)
时间: 2023-06-18 18:04:48 浏览: 137
这段代码定义了一个神经网络模型,包括输入(init_x)和输出(self._policy和self._value)。损失函数使用了随机梯度下降算法(SGD),其中包含学习率(self._lr)、动量(self._momentum)和Nesterov加速梯度。损失函数使用了交叉熵(categorical_crossentropy)和均方误差(mean_squared_error),二者的权重相等。最后使用compile()函数将模型编译。
相关问题
def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise') # AutoEncoder H = self.embedder(X) X_tilde = self.recovery(H) self.autoencoder = Model(inputs=X, outputs=X_tilde) # Adversarial Supervise Architecture E_Hat = self.generator_aux(Z) H_hat = self.supervisor(E_Hat) Y_fake = self.discriminator(H_hat) self.adversarial_supervised = Model(inputs=Z, outputs=Y_fake, name='AdversarialSupervised') # Adversarial architecture in latent space Y_fake_e = self.discriminator(E_Hat) self.adversarial_embedded = Model(inputs=Z, outputs=Y_fake_e, name='AdversarialEmbedded') #Synthetic data generation X_hat = self.recovery(H_hat) self.generator = Model(inputs=Z, outputs=X_hat, name='FinalGenerator') # Final discriminator model Y_real = self.discriminator(H) self.discriminator_model = Model(inputs=X, outputs=Y_real, name="RealDiscriminator") # Loss functions self._mse=MeanSquaredError() self._bce=BinaryCrossentropy()
这段代码看起来是在定义一个生成对抗网络(GAN)的结构。代码中包含了生成器(Generator)、监督器(Supervisor)、判别器(Discriminator)、恢复器(Recovery)和嵌入器(Embedder)等模型的构建。
其中,生成器接收随机噪声作为输入,生成伪造的数据。监督器接收生成器生成的数据,并通过一些处理来生成更高质量的数据。判别器用于区分真实数据和伪造数据。恢复器通过将隐藏层的表示恢复为原始数据。嵌入器用于将原始数据转换为隐藏层的表示。
接下来,代码定义了三个不同的模型:自编码器(AutoEncoder)、在潜在空间中的对抗训练模型(Adversarial Supervise Architecture)和嵌入空间中的对抗训练模型(Adversarial Embedded)。其中自编码器用于将原始数据重构为自身。在潜在空间中的对抗训练模型和嵌入空间中的对抗训练模型分别用于在隐藏层的表示和嵌入空间中进行对抗训练。
此外,代码还定义了生成器模型和判别器模型,分别用于生成合成数据和判断真实数据。
最后,代码定义了均方误差(MeanSquaredError)和二元交叉熵(BinaryCrossentropy)作为损失函数。
请注意,这只是代码的一部分,无法完全了解整个模型的功能和训练过程。如果你需要更详细的解释或其他问题,请提供更多的上下文信息。
class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True)
这是一个使用 PyTorch 框架实现的 YOLOv5 模型,用于目标检测任务。模型通过解析传入的配置文件来定义模型结构,并使用输入的参数来覆盖配置文件中的一些值,例如输入通道数、类别数和锚点等。模型定义了一个 `Model` 类,继承自 PyTorch 中的 `nn.Module` 类。在 `__init__` 方法中,模型首先判断传入的配置文件是字典类型还是 yaml 文件,然后解析配置文件中的值来定义模型结构。模型中的核心是 `parse_model` 函数,它会根据配置文件中的内容来构建网络模型,并返回模型和一个保存列表。模型的输出是目标的分类、位置和置信度等信息。
阅读全文