prometheus使用哪种方式可以监控容器的gpu(请注意是监控容器中的gpu信息),请列出详细步骤及对应的镜像版本
时间: 2024-03-21 07:39:38 浏览: 81
要使用Prometheus监控容器中的GPU信息,可以使用NVIDIA GPU Operator。以下是详细步骤:
1. 安装NVIDIA GPU Operator
```
kubectl create -f https://raw.githubusercontent.com/NVIDIA/gpu-operator/master/deploy/gpu-operator.yaml
```
2. 安装NVIDIA GPU Exporter
```
kubectl create -f https://raw.githubusercontent.com/NVIDIA/gpu-monitoring-tools/master/exporter/deployments/gpu-exporter.yaml
```
3. 创建一个DaemonSet来在每个节点上运行NVIDIA GPU Exporter
```
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: gpu-exporter
namespace: monitoring
spec:
selector:
matchLabels:
app: gpu-exporter
template:
metadata:
labels:
app: gpu-exporter
spec:
containers:
- name: gpu-exporter
image: nvcr.io/nvidia/k8s/gpu-exporter:1.2.0
imagePullPolicy: IfNotPresent
args:
- --no-collector.gpu
- --collector.nvml
ports:
- containerPort: 9101
name: metrics
resources:
limits:
nvidia.com/gpu: 1
requests:
nvidia.com/gpu: 1
volumeMounts:
- name: nvidia
mountPath: /usr/local/nvidia
volumes:
- name: nvidia
hostPath:
path: /usr/local/nvidia
```
4. 在Prometheus的配置文件中添加以下内容:
```
- job_name: 'gpu-exporter'
scrape_interval: 10s
static_configs:
- targets: ['gpu-exporter.monitoring.svc.cluster.local:9101']
```
5. 在Prometheus的Docker Compose文件中添加以下内容:
```
gpu-exporter:
image: nvcr.io/nvidia/k8s/gpu-exporter:1.2.0
container_name: gpu-exporter
ports:
- 9101:9101
args:
- --no-collector.gpu
- --collector.nvml
resources:
limits:
nvidia.com/gpu: 1
requests:
nvidia.com/gpu: 1
volumeMounts:
- name: nvidia
mountPath: /usr/local/nvidia
volumes:
- name: nvidia
hostPath:
path: /usr/local/nvidia
```
6. 重启Prometheus和NVIDIA GPU Exporter容器。现在,您应该能够在Prometheus中看到来自NVIDIA GPU Exporter的指标,包括容器中的GPU信息。
镜像版本:nvcr.io/nvidia/k8s/gpu-exporter:1.2.0
阅读全文