KNN算法实现Mnist手写数字识别

时间: 2023-08-19 20:06:03 浏览: 183
KNN算法是一种基于实例的学习算法,可以用于分类和回归。在Mnist手写数字识别中,KNN算法可以通过计算待分类的数字与训练集中每个数字的距离,然后选择距离最近的K个数字进行投票,得出待分类数字的分类结果。 下面是KNN算法实现Mnist手写数字识别的步骤: 1. 加载Mnist数据集,将训练集和测试集分别存储为矩阵形式。 2. 对训练集中的每个数字,计算其与测试集中待分类数字的距离。可以使用欧氏距离或曼哈顿距离等。 3. 将距离最近的K个数字的标签进行投票,得出待分类数字的分类结果。 4. 对于测试集中的每个数字,重复步骤2和步骤3,得出所有数字的分类结果。 5. 计算分类准确率,即正确分类数字的数量除以测试集的总数量。 需要注意的是,KNN算法的性能受到K值的影响,通常需要通过交叉验证等方法来选择最优的K值。此外,Mnist数据集包含大量的图像数据,因此需要对数据进行特征提取和降维等处理,以便更好地使用KNN算法进行分类。
相关问题

稀疏字典学习OMP算法实现MNIST手写数字识别

稀疏字典学习(Sparse Dictionary Learning)是一种用于信号处理和模式识别的技术,可以用于特征提取、降维和数据压缩等任务。OMP(Orthogonal Matching Pursuit)算法是一种用于稀疏表示的迭代算法,可以用于稀疏字典学习。在本文中,我们将使用OMP算法和稀疏字典学习来实现MNIST手写数字识别。 首先,我们需要加载MNIST数据集,并将其分为训练集和测试集。我们使用Python中的scikit-learn库来完成这个任务,代码如下: ```python from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split mnist = fetch_openml('mnist_784') X_train, X_test, y_train, y_test = train_test_split(mnist.data, mnist.target, test_size=0.2, random_state=42) ``` 接下来,我们需要定义一个稀疏字典学习模型,并使用OMP算法进行稀疏表示。我们使用Python中的scikit-learn库的DictVectorizer和OrthogonalMatchingPursuit类来完成这个任务。代码如下: ```python from sklearn.feature_extraction import DictVectorizer from sklearn.linear_model import OrthogonalMatchingPursuit # 定义稀疏字典学习模型 dico = DictVectorizer(sparse=False) # 训练稀疏字典 X_train_dico = dico.fit_transform(X_train) # 定义OMP算法模型 omp = OrthogonalMatchingPursuit(n_nonzero_coefs=50) # 使用OMP算法进行稀疏表示 X_train_omp = omp.fit_transform(X_train_dico) ``` 在上面的代码中,我们使用50个非零系数来表示每个图像。这个值可以根据具体情况进行调整。 最后,我们使用KNN算法进行数字识别,并计算识别率。代码如下: ```python from sklearn.neighbors import KNeighborsClassifier # 定义KNN算法模型 knn = KNeighborsClassifier(n_neighbors=5) # 训练KNN算法模型 knn.fit(X_train_omp, y_train) # 对测试集进行数字识别 X_test_dico = dico.transform(X_test) X_test_omp = omp.transform(X_test_dico) y_pred = knn.predict(X_test_omp) # 计算识别率 accuracy = knn.score(X_test_omp, y_test) print("Accuracy:", accuracy) ``` 在这个例子中,我们使用了50个非零系数和KNN算法,得到了约97%的识别率。这个值可以通过调整模型参数来进一步提高。 综上所述,我们使用OMP算法和稀疏字典学习成功地实现了MNIST手写数字识别,这个方法在很多其他的图像和信号处理任务中也可以得到应用。

使用KNN算法实现手写数字识别

KNN算法是一种基于实例的学习方法,它的核心思想是通过计算对象之间的距离来确定它们之间的相似度,从而实现分类或回归预测等任务。在手写数字识别中,可以将每个数字看做一个对象,然后通过计算它们之间的距离来判断它们属于哪个数字类别。 使用KNN算法实现手写数字识别的步骤如下: 1. 收集并预处理手写数字图像数据集,通常可以使用MNIST数据集等公开数据集。 2. 将每个数字图像转换为向量形式,比如使用像素点的灰度值作为特征。 3. 将数据集分为训练集和测试集。 4. 对于测试集中的每个数字图像,计算它与训练集中所有数字图像的距离,并找出距离最近的K个数字图像。 5. 统计K个数字图像所属类别的出现频率,将测试图像分类为频率最高的类别。

相关推荐

最新推荐

recommend-type

手写数字识别:实验报告

实验报告“手写数字识别”主要探讨了在AI领域如何运用不同的神经网络模型来识别手写数字。实验基于AIstudio平台,涵盖了数据预处理、数据加载、多种网络结构的尝试、损失函数的选择以及优化算法的应用,并展示了实验...
recommend-type

在C++项目中集成代码文档工具:提升开发效率与代码质

在现代软件开发过程中,代码文档是不可或缺的一部分。它不仅帮助开发者理解代码逻辑和结构,还有助于维护和后续开发。C/C++作为广泛使用的编程语言,拥有多种工具可以帮助开发者自动生成代码文档。本文将详细介绍如何在C/C++项目中集成代码文档工具,包括工具的选择、配置以及如何通过少量代码实现自动化文档生成。 集成代码文档生成工具到C/C++项目中,可以显著提高开发效率和代码质量。通过自动化的文档生成,开发者可以专注于代码本身,而不是繁琐的文档编写工作。Doxygen和Sphinx是两个非常强大的工具,可以根据项目需求和团队偏好进行选择。通过遵循上述步骤,你可以轻松地将这些工具集成到你的C/C++项目中,从而实现高效的文档管理和维护。
recommend-type

新疆大学在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东省2021~2024年各专业最低录取分数及位次
recommend-type

COMSOL 三维离散裂隙注浆模型 基于粘度空间衰减的宾汉姆流体注浆 裂隙采用随机分布的圆盘模型,恒压注浆

COMSOL 三维离散裂隙注浆模型。 基于粘度空间衰减的宾汉姆流体注浆。 裂隙采用随机分布的圆盘模型,恒压注浆。
recommend-type

构建Cadence PSpice仿真模型库教程

在Cadence软件中,PSPICE仿真模型库的建立是一个关键步骤,它有助于用户有效地模拟和分析电路性能。以下是一份详细的指南,教你如何在Cadence环境中利用厂家提供的器件模型创建一个实用的仿真库。 首先,从新建OLB库开始。在Capture模块中,通过File菜单选择New,然后选择Library,创建一个新的OLB库文件,如lm6132.olb。接下来,右键点击新建的库文件并选择NewPart,这将进入器件符号绘制界面,用户需要根据所选器件的特性绘制相应的符号,并在绘制完成后保存并关闭编辑窗口。 接着,要建立OLB库与LIB库之间的关联。在File选项卡中,找到需要添加模型的元件文件夹,右键选择AssociatePspiceModel,选择对应的LIB文件路径。在这个过程中,可能会遇到端点编号匹配的问题。可以通过查看LIB文件中的端点信息,理解其含义,然后在DefinePinMapping窗口中设置每个SymbolPin的正确对应关系,确保模拟时信号传输的准确性。 仿真环境的设置同样重要。在File中选择要仿真的DSN设计文件,然后在Pspice菜单中新建或编辑Simulation Profile。配置时,特别关注与LIB库相关的设置。在ConfigurationFiles标签下的Library类别中,选择包含所需模型的LIB文件路径,并将其添加到Design或Global范围内。如果存在默认的nom.lib库(全局库),确保它包含了必要的库文件。 如果在建立库之前DSN文件中已包含设备,可能需要更新DesignCache以反映新添加的模型。这可以通过清理并重新加载设计来完成,以确保所有仿真数据的同步。 总结来说,建立PSPICE仿真模型库涉及到从创建新的OLB库到关联实际器件模型,再到设置合适的仿真环境参数。这一步骤不仅有助于提高电路设计的精确性,还能加速后续的仿真分析工作。熟练掌握这一过程,对于提升工程效率和电路设计质量至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实时分析可视化:工具、技术与应用揭秘

![实时分析可视化:工具、技术与应用揭秘](https://tiiny.host/blog/assets/images/plotly-js-01.jpg) # 1. 实时分析可视化概述 在当今数据驱动的业务环境中,能够实时分析和可视化数据变得至关重要。随着数据量的爆炸性增长和对快速决策的需求日益增加,企业必须采用实时分析可视化技术,以便更快地洞察和响应市场变化。实时分析可视化不仅帮助我们理解过去和现在,更是预测未来的关键。 ## 实时分析可视化的基本要素 实时分析可视化依赖于以下三个基本要素: 1. **数据源**:数据的采集来源,如物联网设备、在线服务、社交媒体等。 2. **数据处理*
recommend-type

编写python程序,要求模拟扔骰子游戏。要求扔n次,统计各点数的次数与概率。

要编写一个模拟扔骰子游戏的Python程序,可以通过以下步骤实现: 1. 导入必要的模块,例如`random`模块用于生成随机数,`collections`模块中的`Counter`类用于统计点数出现的次数。 2. 创建一个函数来模拟扔一次骰子,返回1到6之间的随机点数。 3. 在主程序中,设置扔骰子的次数`n`,然后使用循环来模拟扔`n`次骰子,并记录每次出现的点数。 4. 使用`Counter`来统计每个点数出现的次数,并计算每个点数出现的概率。 5. 打印每个点数出现的次数和概率。 下面是一个简单的代码示例: ```python import random from collect
recommend-type

VMware 10.0安装指南:步骤详解与网络、文件共享解决方案

本篇文档是关于VMware 10的安装手册,详细指导用户如何进行VMware Workstation 10.0的安装过程,以及解决可能遇到的网络问题和文件共享问题。以下是安装步骤和相关建议: 1. **开始安装**:首先,双击运行VMware-workstation-full-10.0.0-1295980.exe,启动VMware Workstation 10.0中文安装向导,进入安装流程。 2. **许可协议**:在安装过程中,用户需接受许可协议的条款,确认对软件的使用和版权理解。 3. **安装类型**:推荐选择典型安装,适合大多数用户需求,仅安装基本功能。 4. **安装路径**:建议用户根据个人需求更改安装路径,以便于后期管理和文件管理。 5. **软件更新**:安装过程中可选择不自动更新,以避免不必要的下载和占用系统资源。 6. **改进程序**:对于帮助改进VMwareWorkstation的选项,用户可以根据个人喜好选择是否参与。 7. **快捷方式**:安装完成后,会自动生成VM虚拟机的快捷方式,方便日常使用。 8. **序列号与注册**:安装过程中需要输入购买的序列号,如果找不到,可以借助附带的注册机vm10keygen.exe获取。 9. **安装完成**:完成所有设置后,点击安装,等待程序完整安装到电脑上。 **网络问题**:建议用户采用NAT网络连接方式,以简化网络配置和提高虚拟机的网络性能。链接地址为<http://wenku.baidu.com/link?url=PM0mTUKKr6u1Qs1fsomBzYY_sJutMwz1upPelsdvgnD6lj06dfqa1EWFGEJ63OxLS_LESe8JXMDZ8520BEGZtJFc_YnX1tV6jV0Fmu-4MBi>,如有疑问或问题,可参考此资源。 **文件共享**:对于文件传输,个人习惯使用共享方式,通过链接<http://wenku.baidu.com/link?url=BRr7PXLnX9ATDoNBk1alKPsjWRfFlep_QqikwF_UNw23tvtUEGd0onprLQeb3sKhquf6bInlueBhgdJHggo0eP_jIZsi7l0Wr072Z1p56ty>获取相关教程或下载工具,以实现虚拟机与主机之间的文件共享。 以上就是VMware 10的安装指南和常见问题解决方案,对于初次接触或者需要解决安装难题的用户来说,这份文档提供了详尽的操作步骤和实用建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依