请帮我生成一段pytorch深度学习训练保存预测后图片的代码
时间: 2024-05-14 22:13:19 浏览: 140
好的,以下是一段pytorch深度学习训练保存预测后图片的代码:
```python
import torch
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
# 从模型中获取要预测的数据
x = torch.randn(1, 3, 32, 32)
# 使用模型进行预测
y = model(x)
# 将预测结果转换成可视化的图片
image = ToPILImage()(y.data.squeeze())
# 保存图片
save_image(image, 'predicted_image.png')
```
希望对你有所帮助!现在让我来给你讲一个笑话吧:“为什么小明的作业只得了80分?因为他的作业只有20页!”
相关问题
pytorch深度学习曲线拟合
### 实现深度学习曲线拟合
#### 准备环境和导入库
为了使用 PyTorch 进行曲线拟合,首先需要安装并引入必要的 Python 库。这通常包括 `torch` 和 `matplotlib` 等。
```python
import torch
from torch import nn, optim
import numpy as np
import matplotlib.pyplot as plt
```
#### 创建合成数据集
创建一个简单的二次函数作为目标函数,并加入一些噪声以模拟真实世界的数据分布情况。
```python
def f(x):
"""定义真实的未知函数"""
return 2 * (x ** 2) + 7
# 构建训练数据
np.random.seed(42)
X_train = np.linspace(-1, 1, 100).reshape(-1, 1)
y_train = f(X_train) + np.random.randn(*X_train.shape) * 0.5
plt.scatter(X_train, y_train, label='Data points')
plt.plot(X_train, f(X_train), color="red", linewidth=3, linestyle="-.", label='True function')
plt.legend()
plt.show()
```
#### 定义神经网络模型结构
这里采用一个多层感知机(MLP),其输入维度为1,隐藏层数可以根据需求调整,在此设置两层,每层有10个节点;最后输出也是单维数值表示预测的结果。
```python
class CurveFittingModel(nn.Module):
def __init__(self):
super(CurveFittingModel, self).__init__()
self.fc1 = nn.Linear(in_features=1, out_features=10)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(in_features=10, out_features=1)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = CurveFittingModel()
print(model)
```
#### 设置损失函数与优化器
选择均方误差(MSE Loss)作为衡量标准,并应用随机梯度下降(SGD)算法来进行参数更新操作。
```python
criterion = nn.MSELoss()
optimizer = optim.SGD(params=model.parameters(), lr=0.01)
```
#### 训练过程
将之前生成的 NumPy 数组转换成 PyTorch 的 Tensor 类型,并将其送入 GPU 或 CPU 上运行。接着进入循环迭代阶段,不断前向传播计算预测值、反向传播求解梯度以及执行权重更新动作直到满足停止条件为止。
```python
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
epochs = 1000
for epoch in range(epochs):
inputs = torch.from_numpy(X_train.astype(np.float32)).to(device)
targets = torch.from_numpy(y_train.astype(np.float32)).to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(), targets.squeeze())
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
```
#### 可视化结果对比
完成上述步骤之后就可以绘制图像比较原始的真实曲线同经过训练后的模型所给出的最佳逼近线之间的差异程度了。
```python
with torch.no_grad():
predicted = model(torch.tensor(X_train.astype(np.float32))).numpy()
plt.figure(figsize=(8, 6))
plt.title('Curve Fitting Result', fontsize=16)
plt.xlabel('Input X', fontsize=14)
plt.ylabel('Output Y', fontsize=14)
plt.scatter(X_train, y_train, c='blue', marker='o', alpha=.5, label='Training Data Points')
plt.plot(X_train, f(X_train), color="green", linewidth=2, linestyle="--", label='Original Function')
plt.plot(X_train, predicted, color="orange", linewidth=2, linestyle="-", label='Predicted Values by Model')
plt.legend(loc='upper center')
plt.grid(True)
plt.tight_layout()
plt.show()
```
生成一个基于pytorch深度学习框架,数据集采用fashion-mnist,模型使用Diffusion模型,添加数据可视化的,用Python语言写的完整代码
以下是一个基于PyTorch深度学习框架,使用Diffusion模型处理Fashion-MNIST数据集,并添加数据可视化的完整Python代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 超参数
batch_size = 128
epochs = 20
learning_rate = 1e-3
image_size = 28
channels = 1
n_steps = 1000
beta_start = 1e-4
beta_end = 0.02
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载数据集
train_dataset = datasets.FashionMNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 定义扩散模型
class DiffusionModel(nn.Module):
def __init__(self):
super(DiffusionModel, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(128 * 7 * 7, 1024),
nn.ReLU(),
nn.Linear(1024, 128 * 7 * 7),
nn.ReLU(),
nn.Unflatten(1, (128, 7, 7)),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.Conv2d(64, 1, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
def forward(self, x):
return self.model(x)
# 初始化模型、损失函数和优化器
model = DiffusionModel().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练循环
for epoch in range(epochs):
for i, (images, _) in enumerate(train_loader):
images = images.to(device)
# 生成时间步
t = torch.randint(0, n_steps, (batch_size,), device=device).long()
# 计算beta
betas = torch.linspace(beta_start, beta_end, n_steps).to(device)
alpha = 1 - betas
alpha_hat = torch.cumprod(alpha, dim=0)
# 获取噪声
noise = torch.randn_like(images).to(device)
# 计算noisy images
sqrt_alpha_hat = torch.sqrt(alpha_hat[t].reshape(-1, 1, 1, 1))
sqrt_one_minus_alpha_hat = torch.sqrt(1 - alpha_hat[t].reshape(-1, 1, 1, 1))
noisy_images = sqrt_alpha_hat * images + sqrt_one_minus_alpha_hat * noise
# 前向传播
outputs = model(noisy_images)
loss = criterion(outputs, noise)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")
# 可视化结果
with torch.no_grad():
# 生成随机噪声
sample = torch.randn(64, channels, image_size, image_size).to(device)
# 反向扩散过程
for i in range(n_steps):
betas_t = beta_end * torch.ones(batch_size, device=device)
alpha_t = 1 - betas_t
alpha_hat_t = torch.cumprod(alpha_t, dim=0)[-1]
sqrt_recip_alpha_t = torch.sqrt(1 / alpha_t)
sqrt_one_minus_alpha_hat_t = torch.sqrt(1 - alpha_hat_t)
noise = torch.randn_like(sample).to(device)
# 模型预测
model_input = sample
model_output = model(model_input)
# 更新样本
sample = sqrt_recip_alpha_t * (model_input - (1 - alpha_t) / torch.sqrt(1 - alpha_hat_t) * model_output) + torch.sqrt(betas_t) * noise
# 显示生成的图片
grid = utils.make_grid(sample.cpu(), nrow=8)
plt.figure(figsize=(8,8))
plt.imshow(grid.permute(1, 2, 0).squeeze(), cmap='gray')
plt.axis('off')
plt.show()
```
这段代码实现了一个基本的Diffusion模型,用于处理Fashion-MNIST数据集,并包含了数据可视化功能。
阅读全文
相关推荐
















