stata哈肯模型代码
时间: 2023-08-20 10:04:43 浏览: 402
以下是一个简单的 Stata 实现哈肯模型的代码:
```stata
* 定义哈肯模型的参数
scalar num_spins = 20
scalar num_trials = 1000
matrix J = J0
vector h = runiform(num_spins, -1, 1)
* 定义计算能量的函数
capture program drop calculate_energy
program calculate_energy, rclass
syntax spins(anyarray)
tempname energy
local i 1
local j 1
scalar `energy' = 0
forval i = 1/`num_spins' {
forval j = 1/`num_spins' {
scalar `energy' = `energy' + J[`i', `j'] * `spins'[`i'] * `spins'[`j']
}
scalar `energy' = `energy' + h[`i'] * `spins'[`i']
}
return scalar `energy'
end
* 定义模拟退火算法
capture program drop simulated_annealing
program simulated_annealing, rclass
tempname spins
matrix `spins' = runiform(1, `num_spins', 0, 1) > 0.5
scalar t = 1.0
scalar t_min = 0.00001
scalar alpha = 0.9
scalar delta_e = 0
scalar e0 = calculate_energy(`spins')
scalar e1 = 0
scalar prob = 0
scalar u = 0
scalar i = 0
scalar j = 0
while t > t_min {
forval i = 1/`num_trials' {
scalar j = floor(runiform(1) * `num_spins') + 1
scalar delta_e = 2 * h[`j'] * (`spins'[`j'] == 0) - 2 * h[`j'] * (`spins'[`j'] == 1)
forval k = 1/`num_spins' {
scalar delta_e = `delta_e' + 2 * J[`j', `k'] * `spins'[`j'] * `spins'[`k'] * (`spins'[`j'] == 0) - 2 * J[`j', `k'] * `spins'[`j'] * `spins'[`k'] * (`spins'[`j'] == 1)
}
if `delta_e' < 0 {
scalar `spins'[`j'] = 1 - `spins'[`j']
}
else {
scalar prob = exp(-`delta_e' / t)
scalar u = runiform(1)
if `prob' > `u' {
scalar `spins'[`j'] = 1 - `spins'[`j']
}
}
}
scalar t = `t' * `alpha'
}
return scalar(`spins'), calculate_energy(`spins')
end
* 定义初始自旋之间的相互作用矩阵 J0
matrix J0 = J
forval i = 1/`num_spins' {
forval j = 1/`num_spins' {
if `i' < `j' {
scalar J0[`i', `j'] = 2 * runiform(1) - 1
scalar J0[`j', `i'] = `J0'[`i', `j']
}
}
}
* 运行模拟退火算法
simulate `spins', `energy' = (simulated_annealing)
matrix list `spins'
scalar list `energy'
```
在这个代码中,我们首先定义了哈肯模型的参数,包括自旋数、尝试翻转自旋的次数、自旋之间的相互作用和外部磁场。然后我们定义了一个计算能量的函数 `calculate_energy()`,以及一个模拟退火算法 `simulated_annealing()`。在模拟退火算法中,我们首先随机初始化自旋状态,然后按照一定的温度和退火率进行退火过程,最终得到自旋状态和对应的能量。
由于 Stata 没有现成的矩阵加法和乘法运算符,我们需要使用循环来计算每个自旋之间的相互作用。在代码中,我们使用了一个初始自旋之间的相互作用矩阵 `J0`,并在初始化后使用循环来确保它是对称的。
阅读全文