能给你的代码加上详细的注释吗?
时间: 2024-02-28 08:56:37 浏览: 66
目前最为完备的早期Linux系统C源代码,版本为0.11,内有详细注释
5星 · 资源好评率100%
当然可以,以下是详细注释的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, data, targets, transform=None):
self.data = data
self.targets = targets
self.transform = transform
def __getitem__(self, index):
x = self.data[index]
y = self.targets[index]
if self.transform:
x = self.transform(x)
return x, y
def __len__(self):
return len(self.data)
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(), # 水平翻转
transforms.RandomCrop(32, padding=4), # 随机裁剪
transforms.ToTensor(), # 转换为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
])
transform_test = transforms.Compose([
transforms.ToTensor(), # 转换为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
])
# 加载训练集和测试集
trainset = MyDataset(data, targets, transform_train) # 定义训练集
testset = MyDataset(data, targets, transform_test) # 定义测试集
trainloader = DataLoader(trainset, batch_size=128, shuffle=True) # 定义训练集的Dataloader,batch_size=128,shuffle=True
testloader = DataLoader(testset, batch_size=128, shuffle=False) # 定义测试集的Dataloader,batch_size=128,shuffle=False
# 定义模型
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# 定义卷积层和池化层
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
# 定义全连接层
self.fc1 = nn.Linear(128*4*4, 512)
self.bn4 = nn.BatchNorm1d(512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
# 前向传播
x = nn.functional.relu(self.bn1(self.conv1(x)))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.bn2(self.conv2(x)))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.bn3(self.conv3(x)))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 128*4*4)
x = nn.functional.relu(self.bn4(self.fc1(x)))
x = self.fc2(x)
return x
# 实例化模型、损失函数和优化器
net = MyNet() # 实例化模型
criterion = nn.CrossEntropyLoss() # 定义交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # 定义随机梯度下降优化器
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 设置设备,如果有GPU则使用GPU,否则使用CPU
net.to(device) # 将模型移动到设备上
for epoch in range(10): # 进行10轮训练
net.train() # 训练模式
for i, (inputs, targets) in enumerate(trainloader): # 迭代训练集
inputs, targets = inputs.to(device), targets.to(device) # 将数据移动到设备上
optimizer.zero_grad() # 梯度清零
outputs = net(inputs) # 前向传播
loss = criterion(outputs, targets) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
net.eval() # 测试模式
correct = 0 # 正确的数量
total = 0 # 总数量
with torch.no_grad(): # 不计算梯度
for inputs, targets in testloader: # 迭代测试集
inputs, targets = inputs.to(device), targets.to(device) # 将数据移动到设备上
outputs = net(inputs) # 前向传播
_, predicted = torch.max(outputs.data, 1) # 取预测值中的最大值作为预测结果
total += targets.size(0)
correct += (predicted == targets).sum().item()
print('Epoch %d, Test accuracy: %f%%' % (epoch+1, 100 * correct / total)) # 打印测试精度
```
注释中详细解释了每一步所做的操作。
阅读全文